scholarly journals Photocatalytic activity of Fe treated AC/TiO2composites between visible light and UV light irradiation

2010 ◽  
Vol 11 (5) ◽  
pp. 1760-1767 ◽  
Author(s):  
Ze-Da Meng ◽  
Kan Zhang ◽  
Won-Chun Oh
2021 ◽  
pp. 2150334
Author(s):  
Yi-Feng Chai ◽  
Zhong-Hua Zhu ◽  
Ming-Wei Liu ◽  
Jing Zeng ◽  
Gui-Fang Huang ◽  
...  

Development photoinduced photocatalysts is a significant approach to improve photocatalytic activity and stability. Herein, we successfully prepared Zn[Formula: see text]Cd[Formula: see text]S/CeO2 composites by a facile method. It is found that the Zn[Formula: see text]Cd[Formula: see text]S/CeO2 composites show significant enhancement in photocatalytic activity for methyl orange (MO) degradation under visible and UV light irradiation. The degradation efficiency reaches up to 3.7 times higher than that of pure CeO2 under visible light irradiation. Moreover, the Zn[Formula: see text]Cd[Formula: see text]S/CeO2 samples have almost no loss of photocatalytic activity after five recycles, indicating good photocatalytic stability of the samples. The attractive photocatalytic activity of the Zn[Formula: see text]Cd[Formula: see text]S/CeO2 samples could be attributed to the robust charge carriers transfer and separation.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 3242-3247 ◽  
Author(s):  
MASAHIRO KATOH ◽  
AKIHIRO IMAYAMA ◽  
NARISUKE MORI ◽  
TOSHIHIDE HORIKAWA ◽  
TAHEI TOMIDA

Introducing different atoms into TiO 2 crystal lattice is a famous method to improve photocatalytic activity of TiO 2 under visible-light irradiation. In this paper, Nitrogen ( N ) and fluorine ( F ) co -doped TiO 2 powders were prepared by mixing TiCl 3 solutions with ammonium fluoride ( NH 4 F ). In preparation, we used NH 3- H 2 O solution for adjustment of pH values (pH 2, 7, and 9) of mixed solution. X-ray diffraction (XRD) indicated N , F - TiO 2 powders prepared at pH7 and pH9 contained only anatase phase, but the powders prepared at pH2 contained both anatase and rutile phase. The result of XRD also indicated N , F - TiO 2 powders prepared at pH7 had the smallest crystallite size. We measured photocatalytic activity of prepared N , F - TiO 2 powders by the decomposition of methylene blue. N , F - TiO 2 powder prepared at pH7 and pH9 showed same high photocatalytic activity under ultraviolet light irradiation (peak wave length = 352 nm). Furthermore, under green light LED irradiation (wave length = 525 nm), a sample prepared at pH7 decomposed methylene blue more quickly than any other samples. As the result, N , F - TiO 2 prepared at pH7 had the best catalytic activity under both UV-light and visible light in the all of N , F - TiO 2 prepared and reference TiO 2 photocatalyst (ST-01 produced by Ishihara Co. Ltd).


2009 ◽  
Vol 421-422 ◽  
pp. 554-557
Author(s):  
Soihiro Watanabe ◽  
Yousuke Narumi ◽  
Kenji Toda ◽  
Tadashi Ishigaki ◽  
Kazuyoshi Uematsu ◽  
...  

We synthesized Sr0.7La0.2[ ]0.1Bi2Ta2O9 (SBTL , [ ] vacancy), and measured their photocatalytic activity for water decomposition under UV light irradiation after acid treatment. They showed the high photocatalytic activity under UV light irradiation (H2 evolution (213μmol / h) , O2 evolution (82μmol / h)).


Molekul ◽  
2017 ◽  
Vol 12 (2) ◽  
pp. 189
Author(s):  
Vanny Yulia Safitri ◽  
Adlis Santoni ◽  
Diana Vanda Wellia ◽  
Khoiriah Khoiriah ◽  
Safni Safni

Paracetamol is generally used as analgesic and antipyretic drugs. Contamination paracetamol in the environment can occur because of waste material disposal from production site and immediate disposal of household that cause water pollution. Paracetamol is degraded by photolysis method under irradiation 10 watt UV-light (λ=365 nm), visible-light (Philips LED 13 watt 1400 lux) and solar-light with and without addition C-N-codoped TiO2catalyst. The solution is analyzed by UV-Vis spectrophotometer at λ 200-400 nm. Optimum weight of C-N-codoped TiO2 catalyst obtained is 20 mg under UV-light photolysis. Paracetamol 4 mg/L is degraded 45.48% after 120 minutes under UV-light irradiation without catalyst, and increases to be 69.31% by using 20 mg catalyst. While degradation percentage of paracetamol is 16.96 % without catalyst, the percentage increases to be 34.29% after using 20 mg catalyst for 120 minutes photolysis under visible-light. Degradation of paracetamol by solar light achieves only 12.27% in absance of catalyst for 120 minutes irradiation, but it increases significantly until 70.39% in presence of 20 mg catalyst.


Sign in / Sign up

Export Citation Format

Share Document