scholarly journals Mass-Transfer in the Dusty Plasma as a Strongly Coupled Dissipative System: Simulations and Experiments

Author(s):  
Xeniya Koss ◽  
Olga Vaulina ◽  
Oleg Petrov ◽  
Vladimir Fortov
2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Vikram S. Dharodi ◽  
Amita Das

Rayleigh–Taylor (RT) and buoyancy-driven (BD) instabilities are driven by gravity in a fluid system with inhomogeneous density. The paper investigates these instabilities for a strongly coupled dusty plasma medium. This medium has been represented here in the framework of the generalized hydrodynamics (GHD) fluid model which treats it as a viscoelastic medium. The incompressible limit of the GHD model is considered here. The RT instability is explored both for gradual and sharp density gradients stratified against gravity. The BD instability is discussed by studying the evolution of a rising bubble (a localized low-density region) and a falling droplet (a localized high-density region) in the presence of gravity. Since both the rising bubble and falling droplet have symmetry in spatial distribution, we observe that a falling droplet process is equivalent to a rising bubble. We also find that both the gravity-driven instabilities get suppressed with increasing coupling strength of the medium. These observations have been illustrated analytically as well as by carrying out two-dimensional nonlinear simulations. Part 2 of this paper is planned to extend the present study of the individual evolution of a bubble and a droplet to their combined evolution in order to understand the interaction between them.


2013 ◽  
Vol 111 (1) ◽  
Author(s):  
Neil P. Oxtoby ◽  
Elias J. Griffith ◽  
Céline Durniak ◽  
Jason F. Ralph ◽  
Dmitry Samsonov

2008 ◽  
Vol 273-276 ◽  
pp. 782-788 ◽  
Author(s):  
C.R. Ruivo ◽  
J.J. Costa ◽  
A.R. Figueiredo

In this paper the numerical modelling of the behaviour of a channel of a hygroscopic compact matrix is presented. The heat and mass transfer phenomena occurring in the porous medium and within the airflow are strongly coupled, and some properties of the airflow and of the desiccant medium exhibit important changes during the sorption/desorption processes. The adopted physical modelling takes into account the gas side and solid side resistances to heat and mass transfer, as well as the simultaneous heat and mass transfer together with the water adsorption/desorption process in the wall domain. Two phases co-exist in equilibrium inside the desiccant porous medium, the equilibrium being characterized by sorption isotherms. The airflow is treated as a bulk flow, the interaction with the wall being evaluated by using appropriated convective coefficients. The model is used to perform simulations considering two distinct values of the channel wall thickness and different lengths of the channel. The results of the modelling lead to a good understanding of the relationship between the characteristics of the sorption processes and the behaviour of hygroscopic matrices, and provide guidelines for the wheel optimization, namely of the duration of the adsorption and desorption periods occurring in each hygroscopic channel.


Sign in / Sign up

Export Citation Format

Share Document