scholarly journals Heat Transfer Related to Gas Hydrate Formation/Dissociation

Author(s):  
Bei Liu ◽  
Weixin Pang ◽  
Baozi Peng ◽  
Changyu Sun ◽  
Guangjin Che
Author(s):  
Remi-Erempagamo T. Meindinyo ◽  
Runar Bøe ◽  
Thor Martin Svartås ◽  
Silje Bru

Gas hydrates are the foremost flow assurance issue in deep water operations. Since heat transfer is a limiting factor in gas hydrate formation processes, a better understanding of its relation to hydrate formation is important. This work presents findings from experimental study of the effect of gas hydrate content on heat transfer through a cylindrical wall. The experiments were carried out at temperature conditions similar to those encountered in flowlines in deep water conditions. Experiments were conducted on methane hydrate, Tetrahydrofuran hydrate, and ethylene oxide hydrate respectively in stirred cylindrical high pressure autoclave cells. Methane hydrate was formed at 90 bars (pressure), and 8°C, followed by a cooling/heating cycle in the range of 8°C → 4°C → 8°C. Tetrahydrofuran (THF) and ethylene oxide (EO) hydrates were formed at atmospheric pressure and system temperature of 1°C in contact with atmospheric air. This was followed by a heating/cooling cycle within the range of 1°C → 4°C → 1°C, since the hydrate equilibrium temperature of THF hydrate is 4.98°C in contact with air at atmospheric pressure. The experimental conditions of the latter hydrate formers were more controlled, given that both THF and EO are miscible with water. We found in all cases a general trend of decreasing heat transfer coefficient of the cell content with increasing concentration of hydrate in the cell, indicating that hydrate formation creates a heat transfer barrier. The hydrate equilibrium temperature seemed to change with a change in the stoichiometric concentration of THF and EO. While the methane hydrate cooling/heating cycles were performed under quiescent conditions, the effect of stirring was investigated for the latter hydrate formers.


2014 ◽  
Vol 14 (1) ◽  
pp. 45
Author(s):  
Peyman Sabzi ◽  
Saheb Noroozi

Gas hydrates formation is considered as one the greatest obstacles in gas transportation systems. Problems related to gas hydrate formation is more severe when dealing with transportation at low temperatures of deep water. In order to avoid formation of Gas hydrates, different inhibitors are used. Methanol is one of the most common and economically efficient inhibitor. Adding methanol to the flow lines, changes the thermodynamic equilibrium situation of the system. In order to predict these changes in thermodynamic behavior of the system, a series of modelings are performed using Matlab software in this paper. The main approach in this modeling is on the basis of Van der Waals and Plateau's thermodynamic approach. The obtained results of a system containing water, Methane and Methanol showed that hydrate formation pressure increases due to the increase of inhibitor amount in constant temperature and this increase is more in higher temperatures. Furthermore, these results were in harmony with the available empirical data.Keywords: Gas hydrates, thermodynamic inhibitor, modelling, pipeline blockage


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3615
Author(s):  
Florian Filarsky ◽  
Julian Wieser ◽  
Heyko Juergen Schultz

Gas hydrates show great potential with regard to various technical applications, such as gas conditioning, separation and storage. Hence, there has been an increased interest in applied gas hydrate research worldwide in recent years. This paper describes the development of an energetically promising, highly attractive rapid gas hydrate production process that enables the instantaneous conditioning and storage of gases in the form of solid hydrates, as an alternative to costly established processes, such as, for example, cryogenic demethanization. In the first step of the investigations, three different reactor concepts for rapid hydrate formation were evaluated. It could be shown that coupled spraying with stirring provided the fastest hydrate formation and highest gas uptakes in the hydrate phase. In the second step, extensive experimental series were executed, using various different gas compositions on the example of synthetic natural gas mixtures containing methane, ethane and propane. Methane is eliminated from the gas phase and stored in gas hydrates. The experiments were conducted under moderate conditions (8 bar(g), 9–14 °C), using tetrahydrofuran as a thermodynamic promoter in a stoichiometric concentration of 5.56 mole%. High storage capacities, formation rates and separation efficiencies were achieved at moderate operation conditions supported by rough economic considerations, successfully showing the feasibility of this innovative concept. An adapted McCabe-Thiele diagram was created to approximately determine the necessary theoretical separation stage numbers for high purity gas separation requirements.


Sign in / Sign up

Export Citation Format

Share Document