scholarly journals Microsurgical Management and Functional Restoration of Patients with Obsolete Spinal Cord Injury

10.5772/28700 ◽  
2012 ◽  
Author(s):  
Zhang Shaocheng

2021 ◽  
Author(s):  
Zheng Cao ◽  
Weitao Man ◽  
Yuhui Xiong ◽  
Yi Guo ◽  
Shuhui Yang ◽  
...  

Abstract A hierarchically aligned fibrin hydrogel (AFG) that possesses soft stiffness and aligned nanofiber structure has been successfully proven to facilitate neuroregeneration in vitro and in vivo. However, its potential in promoting nerve regeneration in large animal models that is critical for clinical translation has not been sufficiently specified. Here, the effects of AFG on directing neuroregeneration in canine hemisected T12 spinal cord injuries were explored. Histologically obvious white matter regeneration consisting of a large area of consecutive, compact, and aligned nerve fibers is induced by AFG, leading to a significant motor functional restoration. The canines with AFG implantation start to stand well with their defective legs from 3 to 4 weeks postoperatively and even effortlessly climb the steps from 7 to 8 weeks. Moreover, high-resolution multi-shot diffusion tensor imaging illustrates the spatiotemporal dynamics of nerve regeneration rapidly crossing the lesion within 4 weeks in the AFG group. Our findings indicate that AFG could be a potential therapeutic vehicle for spinal cord injury by inducing rapid white matter regeneration and restoring locomotion, pointing out its promising prospect in clinic practice.



2021 ◽  
Vol 34 (6) ◽  
pp. 812-818
Author(s):  
Jennifer A. Iddings ◽  
Anastasia Zarkou ◽  
Edelle C. Field-Fote


2020 ◽  
Vol 10 (10) ◽  
pp. 744
Author(s):  
Filip Fadeev ◽  
Anton Eremeev ◽  
Farid Bashirov ◽  
Roman Shevchenko ◽  
Andrei Izmailov ◽  
...  

This study evaluates the effect of combined epidural electrical stimulation (EES) applied above (C5) and below (L2) the spinal cord injury (SCI) at T8–9 combined with motor training on the restoration of sensorimotor function in mini pigs. The motor evoked potentials (MEP) induced by EES applied at C5 and L2 levels were recorded in soleus muscles before and two weeks after SCI. EES treatment started two weeks after SCI and continued for 6 weeks led to improvement in multiple metrics, including behavioral, electrophysiological, and joint kinematics outcomes. In control animals after SCI a multiphasic M-response was observed during M/H-response testing, while animals received EES-enable training demonstrated the restoration of the M-response and H-reflex, although at a lower amplitude. The joint kinematic and assessment with Porcine Thoracic Injury Behavior scale (PTIBS) motor recovery scale demonstrated improvement in animals that received EES-enable training compared to animals with no treatment. The positive effect of two-level (cervical and lumbar) epidural electrical stimulation on functional restoration in mini pigs following spinal cord contusion injury in mini pigs could be related with facilitation of spinal circuitry at both levels and activation of multisegmental coordination. This approach can be taken as a basis for the future development of neuromodulation and neurorehabilitation therapy for patients with spinal cord injury.





2020 ◽  
Vol 21 (23) ◽  
pp. 8896
Author(s):  
Rustem Islamov ◽  
Farid Bashirov ◽  
Filip Fadeev ◽  
Roman Shevchenko ◽  
Andrei Izmailov ◽  
...  

The translation of new therapies for spinal cord injury to clinical trials can be facilitated with large animal models close in morpho-physiological scale to humans. Here, we report functional restoration and morphological reorganization after spinal contusion in pigs, following a combined treatment of locomotor training facilitated with epidural electrical stimulation (EES) and cell-mediated triple gene therapy with umbilical cord blood mononuclear cells overexpressing recombinant vascular endothelial growth factor, glial-derived neurotrophic factor, and neural cell adhesion molecule. Preliminary results obtained on a small sample of pigs 2 months after spinal contusion revealed the difference in post-traumatic spinal cord outcomes in control and treated animals. In treated pigs, motor performance was enabled by EES and the corresponding morpho-functional changes in hind limb skeletal muscles were accompanied by the reorganization of the glial cell, the reaction of stress cell, and synaptic proteins. Our data demonstrate effects of combined EES-facilitated motor training and cell-mediated triple gene therapy after spinal contusion in large animals, informing a background for further animal studies and clinical translation.



2011 ◽  
Vol 26 (S1) ◽  
pp. s105-s105
Author(s):  
F.A. Rathore ◽  
C. O'connell ◽  
J. Li

IntroductionPhysical Medicine and Rehabilitation is a goal oriented and patient centered specialty which focuses on functional restoration and quality of life of persons with disability. The patterns of injuries among survivors of recent disasters have, range from mild (single limb fracture) to catastrophic (spinal cord injury, amputation, traumatic brain injury). Historically physiatrists have not participated the acute disaster management phase or in the emergent post disaster rehabilitation planning. This task is usually relegated to the trauma, orthopedic and general surgeons.MethodologyAuthors had firsthand experience in the acute and emergent care and rehabilitation of trauma patients after Pakistan, China and Haiti earthquakes. An electronic literature search (English, 1965–2010, Key words: trauma, rehabilitation, disability, spinal cord injury, amputation, disaster, nerve injury) was carried out. Experience sharing through committees, online forum, and communications were conducted with physiatry colleagues internationally.ResultsIn these three recent earthquakes, Physiatrists provided direct patient care, including guidance in the evacuation of survivors with pre-existing disabilities, transport of persons with spinal trauma, treatment of wounds, fractures, pain, spinal trauma patients and persons with amputations. Physiatrists devised appropriate plans for conservative management of fractures. Education of local staff and coordination of rehabilitation was initiated. Monitoring, prevention and treatment of secondary complications including prolonged immobility, pressure ulcers, chronic pain, urinary, bowel and respiratory dysfunction was performed. Physiatrists helped in patient counseling and family education.ConclusionPhysiatrists by virtue of their training and skills are in a better position to manage the disabilities, including direction of rehabilitation and community integration, prevention of complications, and education and training of health workers and teams. Timely rehabilitation interventions for Spinal cord injuries and lower limb amputations following the Pakistan, China and Haiti earthquakes resulted in reduction in morbidity and mortality among those with catastrophic injuries.



Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1310 ◽  
Author(s):  
Jin Young Hong ◽  
Ganchimeg Davaa ◽  
Hyunjin Yoo ◽  
Kwonho Hong ◽  
Jung Keun Hyun

Axonal regeneration after spinal cord injury (SCI) is difficult to achieve, and no fundamental treatment can be applied in clinical settings. DNA methylation has been suggested to play a role in regeneration capacity and neuronal growth after SCI by controlling the expression of regeneration-associated genes (RAGs). The aim of this study was to examine changes in neuronal DNA methylation status after SCI and to determine whether modulation of DNA methylation with ascorbic acid can enhance neuronal regeneration or functional restoration after SCI. Changes in epigenetic marks (5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC)); the expression of Ten-eleven translocation (Tet) family genes; and the expression of genes related to inflammation, regeneration, and degeneration in the brain motor cortex were determined following SCI. The 5hmC level within the brain was increased after SCI, especially in the acute and subacute stages, and the mRNA levels of Tet gene family members (Tet1, Tet2, and Tet3) were also increased. Administration of ascorbic acid (100 mg/kg) to SCI rats enhanced 5hmC levels; increased the expression of the Tet1, Tet2, and Tet3 genes within the brain motor cortex; promoted axonal sprouting within the lesion cavity of the spinal cord; and enhanced recovery of locomotor function until 12 weeks. In conclusion, we found that epigenetic status in the brain motor cortex is changed after SCI and that epigenetic modulation using ascorbic acid may contribute to functional recovery after SCI.



Sign in / Sign up

Export Citation Format

Share Document