scholarly journals Recycling of Mine Wastes as Ceramic Raw Materials: An Alternative to Avoid Environmental Contamination

10.5772/31913 ◽  
2012 ◽  
Author(s):  
Romualdo Rodrigues ◽  
Lisiane Navarro L. Santana ◽  
Gelmires Arajo ◽  
Heber Carlos
2003 ◽  
Vol 66 (1) ◽  
pp. 52-60 ◽  
Author(s):  
ADAM D. HOFFMAN ◽  
KENNETH L. GALL ◽  
DAWN M. NORTON ◽  
MARTIN WIEDMANN

Reliable data on the sources of Listeria monocytogenes contamination in cold-smoked fish processing are crucial in designing effective intervention strategies. Environmental samples (n = 512) and raw fish samples (n = 315) from two smoked fish processing facilities were screened for L. monocytogenes, and all isolates were subtyped by automated ribotyping to examine the relationship between L. monocytogenes contamination from raw materials and that from environmental sites. Samples were collected over two 8-week periods in early spring and summer. The five types of raw fish tested included lake whitefish, sablefish, farm-raised Norwegian salmon, farm-raised Chilean salmon, and feral (wild-caught) salmon from the U.S. West Coast. One hundred fifteen environmental samples and 46 raw fish samples tested positive for L. monocytogenes. Prevalence values for environmental samples varied significantly (P < 0.0001) between the two plants; plant A had a prevalence value of 43.8% (112 of 256 samples), and plant B had a value of 1.2% (3 of 256 samples). For plant A, 62.5% of drain samples tested positive for L. monocytogenes, compared with 32.3% of samples collected from other environmental sites and 3.1% of samples collected from food contact surfaces. Ribotyping identified 11 subtypes present in the plant environments. Multiple subtypes, including four subtypes not found on any raw fish, were found to persist in plant A throughout the study. Contamination prevalence values for raw fish varied from 3.6% (sablefish) to 29.5% (U.S. West Coast salmon), with an average overall prevalence of 14.6%. Sixteen separate L. monocytogenes subtypes were present on raw fish, including nine that were not found in the plant environment. Our results indicate a disparity between the subtypes found on raw fish and those found in the processing environment. We thus conclude that environmental contamination is largely separate from that of incoming raw materials and includes strains persisting, possibly for years, within the plant. Operational and sanitation procedures appear to have a significant impact on environmental contamination, with both plants having similar prevalence values for raw materials but disparate contamination prevalence values for the environmental sites. We also conclude that regular L. monocytogenes testing of drains, combined with molecular subtyping of the isolates obtained, allows for efficient monitoring of persistent L. monocytogenes contamination in a processing plant.


Author(s):  
C. J. Chan ◽  
K. R. Venkatachari ◽  
W. M. Kriven ◽  
J. F. Young

Dicalcium silicate (Ca2SiO4) is a major component of Portland cement. It has also been investigated as a potential transformation toughener alternative to zirconia. It has five polymorphs: α, α'H, α'L, β and γ. Of interest is the β-to-γ transformation on cooling at about 490°C. This transformation, accompanied by a 12% volume increase and a 4.6° unit cell shape change, is analogous to the tetragonal-to-monoclinic transformation in zirconia. Due to the processing methods used, previous studies into the particle size effect were limited by a wide range of particle size distribution. In an attempt to obtain a more uniform size, a fast quench rate involving a laser-melting/roller-quenching technique was investigated.The laser-melting/roller-quenching experiment used precompacted bars of stoichiometric γ-Ca2SiO4 powder, which were synthesized from AR grade CaCO3 and SiO2xH2O. The raw materials were mixed by conventional ceramic processing techniques, and sintered at 1450°C. The dusted γ-Ca2SiO4 powder was uniaxially pressed into 0.4 cm x 0.4 cm x 4 cm bars under 34 MPa and cold isostatically pressed under 172 MPa. The γ-Ca2SiO4 bars were melted by a 10 KW-CO2 laser.


Author(s):  
Chung-kook Lee ◽  
Yolande Berta ◽  
Robert F. Speyer

Barium hexaferrite (BaFe12O19) is a promising candidate for high density magnetic recording media due to its superior magnetic properties. For particulate recording media, nano-sized single crystalline powders with a narrow size distribution are a primary application requirement. The glass-crystallization method is preferred because of the controllability of crystallization kinetics, hence, particle size and size distribution. A disadvantage of this method is the need to melt raw materials at high temperatures with non-reactive crucibles, e.g. platinum. However, in this work, we have shown that crystal growth of barium hexaferrite occurred during low temperature heat treatment of raw batches.


Sign in / Sign up

Export Citation Format

Share Document