scholarly journals Atomic Layer Deposition of Noble Metals – New Developments in Nanostructured Catalysts

Noble Metals ◽  
10.5772/33082 ◽  
2012 ◽  
Author(s):  
Junling Lu ◽  
Yu Lei ◽  
Jeffrey W.
ChemInform ◽  
2014 ◽  
Vol 45 (11) ◽  
pp. no-no
Author(s):  
Jani Haemaelaeinen ◽  
Mikko Ritala ◽  
Markku Leskelae

2004 ◽  
Vol 19 (11) ◽  
pp. 3353-3358 ◽  
Author(s):  
Titta Aaltonen ◽  
Mikko Ritala ◽  
Yung-Liang Tung ◽  
Yun Chi ◽  
Kai Arstila ◽  
...  

The low limit of the deposition temperature for atomic layer deposition (ALD) of noble metals has been studied. Two approaches were taken; using pure oxygen instead of air and using a noble metal starting surface instead of Al2O3. Platinum thin films were obtained by ALD from MeCpPtMe3 and pure oxygen at deposition temperature as low as 200 °C, which is significantly lower than the low-temperature limit of300 °C previously reported for the platinum ALD process in which air was used as the oxygen source. The platinum films grown in this study had smooth surfaces, adhered well to the substrate, and had low impurity contents. ALD of ruthenium, on the other hand, took place at lower deposition temperatures on an iridium seed layer than on an Al2O3 layer. On iridium surface, ruthenium films were obtained from RuCp2 and oxygen at 225 °C and from Ru(thd)3 and oxygen at 250 °C, whereas no films were obtained on Al2O3 at temperatures lower than 275 and 325 °C, respectively. The crystal orientation of the ruthenium films was found to depend on the precursor. ALD of palladium from a palladium β-ketoiminate precursor and oxygen at 250 and 275 °C was also studied. However, the film-growth rate did not saturate to a constant level when the precursor pulse times were increased.


2019 ◽  
Vol 3 (15) ◽  
pp. 271-278 ◽  
Author(s):  
J. W. Elam ◽  
A. V. V. Zinovev ◽  
Michael J. Pellin ◽  
David J. Comstock ◽  
Mark C. Hersam

Catalysts ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1298
Author(s):  
Xiaofeng Wang ◽  
Zhe Zhao ◽  
Chengcheng Zhang ◽  
Qingbo Li ◽  
Xinhua Liang

In recent years, atomic layer deposition (ALD) is widely used for surface modification of materials to improve the catalytic performance for removing pollutants, e.g., CO, hydrocarbons, heavy metal ions, and organic pollutants, and much progress has been achieved. In this review, we summarize the recent development of ALD applications in environmental remediation from the perspective of surface modification approaches, including conformal coating, uniform particle deposition, and area-selective deposition. Through the ALD conformal coating, the activity of photocatalysts improved. Uniform particle deposition is used to prepare nanostructured catalysts via ALD for removal of air pollutions and dyes. Area-selective deposition is adopted to cover the specific defects on the surface of materials and synthesize bimetallic catalysts to remove CO and other contaminations. In addition, the design strategy of catalysts and shortcomings of current studies are discussed in each section. At last, this review points out some potential research trends and comes up with a few routes to further improve the performance of catalysts via ALD surface modification and deeper investigate the ALD reaction mechanisms.


2019 ◽  
Author(s):  
Petro Deminskyi ◽  
Ali Haider ◽  
Hamit Eren ◽  
Talha Masood Khan ◽  
Necmi Biyikli

<p>Selective deposition is a powerful self-aligned precision materials processing strategy which can hugely benefit next-generation nanoelectronics, catalysis, and energy conversion/storage fields. Atomic layer deposition (ALD) is showing a significant promise in enabling area-selective deposition using various growth blocking layers including self-assembled monolayers (SAMs) and various polymers. However, these blocking layers are not compatible with energetic co-reactants like ozone and plasma radicals, showing relatively fast degradation and losing their growth inhibition character. In this work, we demonstrate that polymerized fluorocarbon surfaces function as effective growth inhibitors for ALD-grown Pt and Pd films. Besides effectively inhibiting film growth with considerable nucleation delays for, Pt experiments revealed that polymerized CF<sub>x</sub> layers are also ozone-compatible. To the best of our knowledge, this is the first demonstration of an AS-ALD process using ozone as co-reactant for noble metals. In our manuscript, we detail our observations of (Pt,Pd) film nucleation evolution and self-aligned deposition experiments on patterned samples. We have performed in-depth chemical and surface characterizations along the nucleation studies and self-aligned patterning experiments.</p>


2013 ◽  
Vol 26 (1) ◽  
pp. 786-801 ◽  
Author(s):  
Jani Hämäläinen ◽  
Mikko Ritala ◽  
Markku Leskelä

Sign in / Sign up

Export Citation Format

Share Document