Large-scale numerical simulation of groundwater flow and solute transport in discretely-fractured crystalline bedrock

2011 ◽  
Vol 34 (12) ◽  
pp. 1539-1552 ◽  
Author(s):  
Daniela Blessent ◽  
Rene Therrien ◽  
Carl W. Gable
2019 ◽  
Vol 9 (5) ◽  
pp. 847
Author(s):  
Lide Wei ◽  
Changfu Wei ◽  
Sugang Sui

This paper suggests a large-scale three-dimensional numerical simulation method to investigate the fluorine pollution near a slag yard. The large-scale three-dimensional numerical simulation method included an experimental investigation, laboratory studies of solute transport during absorption of water by soil, and large-scale three-dimensional numerical simulations of solute transport. The experimental results showed that the concentrations of fluorine from smelting slag and construction waste soil were well over the discharge limit of 0.1 kg/m3 recommended by Chinese guidelines. The key parameters of the materials used for large-scale three-dimensional numerical simulations were determined based on an experimental investigation, laboratory studies, and soil saturation of survey results and back analyses. A large-scale three-dimensional numerical simulation of solute transport was performed, and its results were compared to the experiment results. The simulation results showed that the clay near the slag had a high saturation of approximately 0.9, consistent with the survey results. Comparison of the results showed that the results of the numerical simulation of solute transport and the test results were nearly identical, and that the numerical simulation results could be used as the basis for groundwater environmental evaluation.


2012 ◽  
Vol 588-589 ◽  
pp. 1278-1281
Author(s):  
Jun Pan ◽  
Shi Xiao Li ◽  
Chang Liu ◽  
Yang Li

More and more people have take more attention on the problem like Seawater intrusion, The same floor recharge and "heat transfixion". This article has established the groundwater flow and solute transport and temperature coupling numerical model,to simulate the underground water temperature’s change by changing the wells’ spacing manner. Simulation results show that the two kinds of disposing Wells solutions are not cause seawater invasion, the second disposing Wells scheme help to prevent the occurrence of seawater invasion.


2009 ◽  
Vol 1 (1) ◽  
pp. 1871-1878 ◽  
Author(s):  
Hajime Yamamoto ◽  
Keni Zhang ◽  
Kenzi Karasaki ◽  
Atsunao Marui ◽  
Hitoshi Uehara ◽  
...  

Author(s):  
Medhat El-Bihery ◽  
Abdel Aziz Al-Mushikhi ◽  
Salim Al-khanbashi ◽  
Ahmed Al Saeedi ◽  
Ali Mohsin Al-Lawati ◽  
...  

Author(s):  
Susanne Charlotta Åberg ◽  
Annika Katarina Åberg ◽  
Kirsti Korkka-Niemi

AbstractGreater complexity in three-dimensional (3D) model structures yields more plausible groundwater recharge/discharge patterns, especially in groundwater/surface-water interactions. The construction of a 3D hydrostratigraphic model prior to flow modelling is beneficial when the hydraulic conductivity of geological units varies considerably. A workflow for 3D hydrostratigraphic modelling with Leapfrog Geo and flow modelling with MODFLOW-NWT was developed. It was used to evaluate how the modelling results for groundwater flow and recharge/discharge patterns differ when using simple or more complex hydrostratigraphic models. The workflow was applied to a study site consisting of complex Quaternary sediments underlain by fractured and weathered crystalline bedrock. Increasing the hydrostratigraphic detail appeared to improve the fit between the observed and simulated water table, and created more plausible groundwater flow patterns. Interlayered zones of low and high conductivity disperse the recharge/discharge patterns, increasing the vertical flow component. Groundwater flow was predominantly horizontal in models in which Quaternary sediments and bedrock were simplified as one layer per unit. It appears to be important to define the interlayered low-conductivity units, which can limit groundwater infiltration and also affect groundwater discharge patterns. Explicit modelling with Leapfrog Geo was found to be effective but time-consuming in the generation of scattered and thin-layered strata.


2021 ◽  
Vol 11 (6) ◽  
pp. 2551
Author(s):  
Hyobum Lee ◽  
Hangseok Choi ◽  
Soon-Wook Choi ◽  
Soo-Ho Chang ◽  
Tae-Ho Kang ◽  
...  

This study demonstrates a three-dimensional numerical simulation of earth pressure balance (EPB) shield tunnelling using a coupled discrete element method (DEM) and a finite difference method (FDM). The analysis adopted the actual size of a spoke-type EPB shield tunnel boring machine (TBM) consisting of a cutter head with cutting tools, working chamber, screw conveyor, and shield. For the coupled model to reproduce the in situ ground condition, the ground formation was generated partially using the DEM (for the limited domain influenced by excavation), with the rest of the domain being composed of FDM grids. In the DEM domain, contact parameters of particles were calibrated via a series of large-scale triaxial test analyses. The model simulated tunnelling as the TBM operational conditions were controlled. The penetration rate and the rotational speed of the screw conveyor were automatically adjusted as the TBM advanced to prevent the generation of excessive or insufficient torque, thrust force, or chamber pressure. Accordingly, these parameters were maintained consistently around their set operational ranges during excavation. The simulation results show that the proposed numerical model based on DEM–FDM coupling could reasonably simulate EPB driving while considering the TBM operational conditions.


Sign in / Sign up

Export Citation Format

Share Document