scholarly journals Phase Identification and Size Evaluation of Mechanically Alloyed Cu-Mg-Ni Powders

Author(s):  
Celal Kursun ◽  
Musa Gogebakan ◽  
M. Samadi Khoshkhoo ◽  
Jürgen Eckert
2014 ◽  
Vol 695 ◽  
pp. 151-154
Author(s):  
Wan Mohd Hilmi Hussein Wan Omar ◽  
Nurulhuda Bashirom ◽  
Zuhailawati Hussain ◽  
Indra Putra Almanar ◽  
Wan Abdul Rahman Assyahid Wan Ibrahim

This paper presents a study on the synthesis of Niobium Carbide (NbC) and Vanadium Carbide (VC) in Copper (Cu) matrix by mechanical alloying (MA) technique. The elemental powders of Cu, Niobium (Nb), Vanadium (V) and synthetic graphite powder were mechanically alloyed for 30 hours at 400 rpm in a planetary ball mill Fritcsh “Pulverisette 6” according to the stoichiometric ratio of Cu-(10-x) vol%NbC-(0+x) vol%VC (x=1,3,5,7,9). The milling was performed under Argon atmosphere. The as-milled powder were compacted at 400 MPa and sintered using a microwave sintering furnace at 900°C with 1 hour soaking time. The phase identification was performed by using the X-ray Diffraction (XRD) analysis on the as-milled powders and sintered pellets. From the result, the NbC and VC phases were successfully formed after milling, and were precipitated after sintering. The average crystallite size and lattice strain of Cu, before and after sintering were 42.302 nm, 0.013%, and 71.294 nm, 0.004%, respectively.


Author(s):  
Jordi Marti ◽  
Timothy E. Howson ◽  
David Kratz ◽  
John K. Tien

The previous paper briefly described the fine microstructure of a mechanically alloyed oxide dispersion strengthened nickel-base solid solution. This note examines the fine microstructure of another mechanically alloyed system. This alloy differs from the one described previously in that it is more generously endowed with coherent precipitate γ forming elements A1 and Ti and it contains a higher volume fraction of the finely dispersed Y2O3 oxide. An interesting question to answer in the comparative study of the creep and stress rupture of these two ODS systems is the role of the precipitate γ' in the mechanisms of creep and stress rupture in alloys already containing oxide dispersoids.The nominal chemical composition of this alloy is Ni - 20%Cr - 2.5%Ti - 1.5% A1 - 1.3%Y203 by weight. The system receives a three stage heat treatment-- the first designed to produce a coarse grain structure similar to the solid solution alloy but with a smaller grain aspect ratio of about ten.


Author(s):  
Prakash Rao

Image shifts in out-of-focus dark field images have been used in the past to determine, for example, epitaxial relationships in thin films. A recent extension of the use of dark field image shifts has been to out-of-focus images in conjunction with stereoviewing to produce an artificial stereo image effect. The technique, called through-focus dark field electron microscopy or 2-1/2D microscopy, basically involves obtaining two beam-tilted dark field images such that one is slightly over-focus and the other slightly under-focus, followed by examination of the two images through a conventional stereoviewer. The elevation differences so produced are usually unrelated to object positions in the thin foil and no specimen tilting is required.In order to produce this artificial stereo effect for the purpose of phase separation and identification, it is first necessary to select a region of the diffraction pattern containing more than just one discrete spot, with the objective aperture.


Author(s):  
C.M. Sung ◽  
K.J. Ostreicher ◽  
M.L. Huckabee ◽  
S.T. Buljan

A series of binary oxides and SiC whisker reinforced composites both having a matrix composed of an α-(Al, R)2O3 solid solution (R: rare earth) have been studied by analytical electron microscopy (AEM). The mechanical properties of the composites as well as crystal structure, composition, and defects of both second phases and the matrix were investigated. The formation of various second phases, e.g. garnet, β-Alumina, or perovskite structures in the binary Al2O3-R2O3 and the ternary Al2O3-R2O3-SiC(w) systems are discussed.Sections of the materials having thicknesses of 100 μm - 300 μm were first diamond core drilled. The discs were then polished and dimpled. The final step was ion milling with Ar+ until breakthrough occurred. Samples prepared in this manner were then analyzed using the Philips EM400T AEM. The low-Z energy dispersive X-ray spectroscopy (EDXS) data were obtained and correlated with convergent beam electron diffraction (CBED) patterns to identify phase compositions and structures. The following EDXS parameters were maintained in the analyzed areas: accelerating voltage of 120 keV, sample tilt of 12° and 20% dead time.


Author(s):  
Arezki Tagnit-Hamou ◽  
Shondeep L. Sarkar

All the desired properties of cement primarily depend on the physicochemical characteristics of clinker from which the cement is produced. The mineralogical composition of the clinker forms the most important parameter influencing these properties.Optical microscopy provides reasonably accurate information pertaining to the thermal history of the clinker, while XRDA still remains the proven method of phase identification, and bulk chemical composition of the clinker can be readily obtained from XRFA. Nevertheless, all these microanalytical techniques are somewhat limited in their applications, and SEM/EDXA combination fills this gap uniquely by virtue of its high resolution imaging capability and possibility of instantaneous chemical analysis of individual phases.Inhomogeneities and impurities in the raw meal, influence of kiln conditions such as sintering and cooling rate being directly related to the microstructure can be effectively determined by SEM/EDXA. In addition, several physical characteristics of cement, such as rhcology, grindability and hydraulicity also depend on the clinker microstructure.


Author(s):  
T. E. Mitchell ◽  
P. B. Desch ◽  
R. B. Schwarz

Al3Zr has the highest melting temperature (1580°C) among the tri-aluminide intermetal1ics. When prepared by casting, Al3Zr forms in the tetragonal DO23 structure but by rapid quenching or by mechanical alloying (MA) it can also be prepared in the metastable cubic L12 structure. The L12 structure can be stabilized to at least 1300°C by the addition of copper and other elements. We report a TEM study of the microstructure of bulk Al5CuZr2 prepared by hot pressing mechanically alloyed powder.MA was performed in a Spex 800 mixer using a hardened steel container and balls and adding hexane as a surfactant. Between 1.4 and 2.4 wt.% of the hexane decomposed during MA and was incorporated into the alloy. The mechanically alloyed powders were degassed in vacuum at 900°C. They were compacted in a ram press at 900°C into fully dense samples having Vickers hardness of 1025. TEM specimens were prepared by mechanical grinding followed by ion milling at 120 K. TEM was performed on a Philips CM30 at 300kV.


2020 ◽  
Vol 12 (4) ◽  
pp. 04012-1-04012-5
Author(s):  
S. Khan ◽  
◽  
A. Vyas ◽  
S. Rajan ◽  
S. Jani ◽  
...  

Author(s):  
T. J. Marini ◽  
S. L. Weiss ◽  
A. Gupta ◽  
Y. T. Zhao ◽  
T. M. Baran ◽  
...  

Abstract Purpose Thyroid ultrasound is a key tool in the evaluation of the thyroid, but billions of people around the world lack access to ultrasound imaging. In this study, we tested an asynchronous telediagnostic ultrasound system operated by individuals without prior ultrasound training which may be used to effectively evaluate the thyroid and improve access to imaging worldwide. Methods The telediagnostic system in this study utilizes volume sweep imaging (VSI), an imaging technique in which the operator scans the target region with simple sweeps of the ultrasound probe based on external body landmarks. Sweeps are recorded and saved as video clips for later interpretation by an expert. Two operators without prior ultrasound experience underwent 8 h of training on the thyroid VSI protocol and the operation of the telemedicine platform. After training, the operators scanned patients at a health center in Lima. Telediagnostic examinations were sent to the United States for remote interpretation. Standard of care thyroid ultrasound was performed by an experienced radiologist at the time of VSI examination to serve as a reference standard. Results Novice operators scanned 121 subjects with the thyroid VSI protocol. Of these exams, 88% were rated of excellent image quality showing complete or near complete thyroid visualization. There was 98.3% agreement on thyroid nodule presence between VSI teleultrasound and standard of care ultrasound (Cohen’s kappa 0.91, P < 0.0001). VSI measured the thyroid size, on average, within 5 mm compared to standard of care. Readers of VSI were also able to effectively characterize thyroid nodules, and there was no significant difference in measurement of thyroid nodule size (P = 0.74) between VSI and standard of care. Conclusion Thyroid VSI telediagnostic ultrasound demonstrated both excellent visualization of the thyroid gland and agreement with standard of care thyroid ultrasound for nodules and thyroid size evaluation. This system could be deployed for evaluation of palpable thyroid abnormalities, nodule follow-up, and epidemiological studies to promote global health and improve the availability of diagnostic imaging in underserved communities.


Sign in / Sign up

Export Citation Format

Share Document