scholarly journals Green Gold from Dairy Industry: A Self-Sustained Eco-Friendly Effluent Treatment Plant

2021 ◽  
Author(s):  
Shaon Ray Chaudhuri

The major bottleneck of dairy effluent treatment plant operation is the generation of 10 m3 of nutrient rich wastewater per m3 of milk processed resulting in an annual production of 7.93 tons of carbon dioxide equivalent (CO2 e) gas during treatment in a 7–8 step process. It is an expensive, non-ecofriendly, laborious process which is often not adoptable by the small segment installations. A carefully selected tailor-made bacterial consortium in biofilm reactor within 4 h of incubation in a single step operation under ambient condition could transform the total volume of wastewater into ammonia rich liquid biofertilizer generating 0.79 tons/year CO2 e gas. This biofertilizer replaces the use of fresh water and chemical fertilizer for agriculture, producing economic crops at par with chemical fertilizer. In certain cases, the production of crops is increased substantially over chemical fertilizer based growth. It reduced carbohydrate content of tuber crops. The generated liquid biofertilizer can overcome the shortage in fodder production without using chemical fertilizer and fresh water, hence solving one of the major concerns for sustaining the expansion of dairy industry, hence making dairy effluent treatment plant (ETP) operation an eco-friendly, self-sustainable operation.

2016 ◽  
Vol 75 (1) ◽  
pp. 182-188 ◽  
Author(s):  
Asma Ahmed ◽  
Nimmakayala Jyothi ◽  
Adithya Ramesh

A single step process is proposed for ammonium removal from nitrogenous industrial effluents, with a concomitant generation of algal biomass. A microalgal strain found in the effluent treatment plant of a fertilizer industry in Mumbai, India was systematically adapted to remove up to 700 ppm of ammoniacal nitrogen from industrial wastewater, which is nearly four times higher than the ammonium tolerance reported in the literature as well as other algal strains tested in our laboratory. 18S rRNA sequencing revealed the strain to be Chlorella pyrenoidosa. Effects of process parameters such as pH, temperature and light intensity on cell growth and ammonium removal by the adapted cells were studied. Optimal conditions were found to be pH of 9, temperature of 30 °C and a light intensity of 3,500 Lux for the adapted cells.


1988 ◽  
Vol 20 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Rurik Skogman ◽  
Reino Lammi

The requirements imposed on the Finnish forest products industry by the water authorities have focused on the reduction of BOD and suspended solids in the wastewaters. The industry has tried to comply with these requirements, first through internal measures such as process changes and closed systems. When these have not been sufficient, external treatment has been resorted to. The Wilh. Schauman Company in Jakobstad has chosen activated sludge with extended aeration from among the available methods for treating effluent. The plant has operated since the beginning of 1986 with extremely good results. In addition to the reduction of BOD and suspended solids, there has been a marked decrease of chlorinated phenols. Chlorinated substances with higher molecular weight are also removed during the process.


1992 ◽  
Vol 25 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Larbi Tebai ◽  
Ioannis Hadjivassilis

Soft drinks industry wastewater from various production lines is discharged into the Industrial Effluent Treatment Plant. The traditional coagulation/flocculation method as first step, followed by biological treatment as second step, has been adopted for treating the soft drinks industry wastewaters. The performance of the plant has been evaluated. It has been found that the effluent characteristics are in most cases in correspondence with the requested standards for discharging the effluent into the Nicosia central sewerage system.


Author(s):  
Saurabh N. Joglekar ◽  
Pratik D. Solankey ◽  
Sachin A. Mandavgane ◽  
Bhaskar D. Kulkarni

2019 ◽  
Vol 7 (2) ◽  
pp. 113-115 ◽  
Author(s):  
Karishma Shamarukh ◽  
- Mohammad Omar Faruq ◽  
Nasrin Jahan ◽  
Amina Sultana ◽  
Ridwan Naim Faruq

Hydrogen sulfide is a notorious agent known to cause serious injuries in the occupational field. We are going to discussa case of a 20 years old male working in a effluent treatment plant in Savar, Bangladesh who accidentally entered thefume room and was exposed to the toxic gas. He lost consciousness and was brought to our care from a local hospitalafter endotracheal intubation condition. He was found in state of unconsciousness grade III on admission to our ICU.His brain CT scan revealed diffuse cerebral edema. Chest X-ray revealed finding suggestive of diffuse pneumonitis.Cardiology evaluation suggested Toxic cardiomyopathy as his high sensitive Troponin I was very high on admission (2037ng/L). Supportive care was given in the form of mechanical ventilation, antibiotics, anticonvulsant andanti-ischemic medications. Patient regained consciousness on day 10 after admission and gradually improvedclinically. By the end of the month of stay in hospital he was significantly improved. Bangladesh Crit Care J September 2019; 7(2): 113-115


Sign in / Sign up

Export Citation Format

Share Document