scholarly journals New Combined Technology of Deformation “Rolling-Equal Channel Angular Pressing”, Allowing to Obtain Metals and Alloys with Sub-Ultra-fine-Grained Structure

Author(s):  
Abdrakhman Naizabekov ◽  
Sergey Lezhnev ◽  
Evgeniy Panin ◽  
Irina Volokitina
2010 ◽  
Vol 667-669 ◽  
pp. 487-492
Author(s):  
Alla Kipelova ◽  
Ilya Nikulin ◽  
Sergey Malopheyev ◽  
Rustam Kaibyshev

Microstructural changes during equal channel angular pressing (ECAP) at the temperatures of 250 and 300°C to the strains ~4, ~8 and ~12 were studied in a coarse-grained Al-5.4%Mg-0.5%Mn-0.1%Zr alloy. At a strain of ~4, the microstructural evolution is mainly characterized by the development of well-defined subgrains within interiors of initial grains and the formation of fine grains along original boundaries. Further straining leads to increase in the average misorientation angle, the fraction of high-angle grain boundaries and the fraction of new grains. However, only at 300°C, the plastic deformation to a strain of ~12 leads to the formation of almost uniform submicrocrystalline (SMC) grained structure with an average crystallites size of ~ 0.5 m. At 250°C, the microstructure remains non-uniform and consists of subgrains and new recrystallized grains. The mechanism of new SMC structure formation after ECAP is discussed.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 683
Author(s):  
Muneer Baig ◽  
Ateekh Ur Rehman ◽  
Jabair A. Mohammed ◽  
Asiful H. Seikh

In this investigation, the focus is on improving the quality of the Al 5083 alloy by equal-channel angular pressing (ECAP) innovation. Equal-channel angular pressing (ECAP) is one of the best technologies for converting macro grain into ultra-fine-grained structure. Grain structure which is finer increases the strength of the material. In this work, a severe plastic deformation using equal-channel angular pressing (ECAP) up to 3 passes was given on Al5083 alloy using path BC at room temperature. The evolution of the microstructure was studied using an optical microscope. Tensile studies were also done. Both hardness (Vickers) and tensile strength rises as the number of passes increases; however, the ductility or the percentage of elongation increases. It can be said that the final product of this aforementioned alloy after ECAPed processing is considered to be suitable for various applications in which higher strength is required.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 654
Author(s):  
Ryosuke Matsutani ◽  
Nobuo Nakada ◽  
Susumu Onaka

Ultra-fine-grained (UFG) Cu shows little total elongation in tensile tests because simple shear deformation is concentrated in narrow regions during the initial stage of plastic deformation. Here, we attempted to improve the total elongation of UFG Cu obtained by equal-channel angular pressing. By making shallow dents on the side surfaces of the plate-like specimens, this induced pure shear deformation and increased their total elongation. During the tensile tests, we observed the overall and local deformation of the dented and undented UFG Cu specimens. Using three-dimensional digital image correlation, we found that the dented specimens showed suppression of thickness reduction and delay in fracture by enhancement of pure shear deformation. However, the dented and undented specimens had the same ultimate tensile strength. These results provide us a new concept to increase total elongation of UFG materials.


2017 ◽  
Vol 23 (3) ◽  
pp. 222 ◽  
Author(s):  
Ondřej Hilšer ◽  
Stanislav Rusz ◽  
Wojciech Maziarz ◽  
Jan Dutkiewicz ◽  
Tomasz Tański ◽  
...  

<p>Equal channel angular pressing (ECAP) method was used for achieving very fine-grained structure and increased mechanical properties of AZ31 magnesium alloy. The experiments were focused on the, in the initial state, hot extruded alloy. ECAP process was realized at the temperature 250°C and following route Bc. It was found that combination of hot extrusion and ECAP leads to producing of material with significantly fine-grained structure and improves mechanical properties. Alloy structure after the fourth pass of ECAP tool with helix matrix 30° shows a fine-grained structure with average grain size of 2 µm to 3 µm and high disorientation between the grains. More experimental results are discussed in this article.</p>


Sign in / Sign up

Export Citation Format

Share Document