Development of Ultra-Fine Grained Structure in an Al-5.4%Mg-0.5%Mn Alloy Processed by ECAP

2010 ◽  
Vol 667-669 ◽  
pp. 487-492
Author(s):  
Alla Kipelova ◽  
Ilya Nikulin ◽  
Sergey Malopheyev ◽  
Rustam Kaibyshev

Microstructural changes during equal channel angular pressing (ECAP) at the temperatures of 250 and 300°C to the strains ~4, ~8 and ~12 were studied in a coarse-grained Al-5.4%Mg-0.5%Mn-0.1%Zr alloy. At a strain of ~4, the microstructural evolution is mainly characterized by the development of well-defined subgrains within interiors of initial grains and the formation of fine grains along original boundaries. Further straining leads to increase in the average misorientation angle, the fraction of high-angle grain boundaries and the fraction of new grains. However, only at 300°C, the plastic deformation to a strain of ~12 leads to the formation of almost uniform submicrocrystalline (SMC) grained structure with an average crystallites size of ~ 0.5 m. At 250°C, the microstructure remains non-uniform and consists of subgrains and new recrystallized grains. The mechanism of new SMC structure formation after ECAP is discussed.

2007 ◽  
Vol 551-552 ◽  
pp. 621-626
Author(s):  
Young Gun Ko ◽  
Yong Nam Kwon ◽  
Jung Hwan Lee ◽  
Dong Hyuk Shin ◽  
Chong Soo Lee

Cavitation behavior during superplastic flow of ultra-fine grained (UFG) Ti-6Al-4V alloy was established with the variation of grain size and misorientation. After imposing an effective strainup to 8 via equal-channel angular pressing (ECAP) at 873 K, alpha-phase grains were markedly refined from 11 μm to ≈ 0.3 μm, and misorientation angle was increased. Uniaxial-tension tests were conducted for initial coarse grained (CG) and two UFG alloys (ε = 4 and 8) at temperature of 973 K and strain rate of 10-4 s-1. Quantitative measurements of cavitation evidenced that both the average size and the area fraction of cavities significantly decreased with decreasing grain size and/or increasing misorientation. It was also found that, when compared to CG alloy, cavitation as well as diffused necking was less prevalent in UFG alloys, which was presumably due to the higher value of strain-rate sensitivity. Based on the several theoretical models describing the cavity growth behavior, the cavity growth mechanism in UFG alloys was suggested.


2010 ◽  
Vol 58 (6) ◽  
pp. 2112-2123 ◽  
Author(s):  
Tao Qian ◽  
Michael Marx ◽  
Kerstin Schüler ◽  
Matthias Hockauf ◽  
Horst Vehoff

2008 ◽  
Vol 584-586 ◽  
pp. 703-707 ◽  
Author(s):  
Ilchat Sabirov ◽  
Yuri Estrin ◽  
Matthew R. Barnett ◽  
Ilana B. Timokhina ◽  
Peter D. Hodgson

This work focuses on the effect of strain rate on the deformation behaviour of an ultrafine grained Al alloy 6082 produced by equal channel angular pressing. The uniform tensile elongation was found to increase with decreasing strain rate very substantially. This effect is discussed in terms of the mechanisms that control plastic deformation of the alloy.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012052
Author(s):  
R K Vafin ◽  
A V Asylbaev ◽  
D V Mamontov ◽  
I D Sklizkov ◽  
G I Raab ◽  
...  

Abstract This work is devoted to the study of the effect of the duration of ion nitriding by glow discharge on the physical and mechanical properties of tool steel with different initial structure. We used specimens of R6M5 tool steel with a coarse-grained structure obtained after annealing at a temperature of 850°C and with a fine-grained structure obtained after severe plastic deformation by torsion discharge. With an increase in the duration of ion nitriding, the thickness of the hardened layer and wear resistance increase. The combination of plastic deformation with ion nitriding by glow discharge increases the adsorption and diffusion rate of the saturating element due to the creation of a highly fragmented and disoriented fine-grained structure and contributed to reduction in processing time.


2016 ◽  
Vol 47 (12) ◽  
pp. 6056-6069 ◽  
Author(s):  
R. Alizadeh ◽  
R. Mahmudi ◽  
A. H. W. Ngan ◽  
P. H. R. Pereira ◽  
Y. Huang ◽  
...  

2014 ◽  
Vol 922 ◽  
pp. 651-656 ◽  
Author(s):  
Daria Shangina ◽  
Yulia Maksimenkova ◽  
Natalia Bochvar ◽  
Vladimir Serebryany ◽  
Georgy Raab ◽  
...  

Equal channel angular pressing (ECAP) results in grain-subgrain structure formation in Cu0.75 %Cr alloy with the average size of structure elements of 320 ± 73 nm Addition of hafnium into the Cu-Cr alloy leads to decrease of average size down to 225±82 nm and to increase of the high angle boundaries fraction from 40% to 53%. Microhardness of the Cu-0.7 %Cr-0.9 %Hf alloy is higher, than of the Cu-0.75 %Cr alloy, as after ECAP, so after heating when the aging processes occur in the temperature interval 400–550 °С. The strength in the tension tests of the Cu-0.7 %Cr-0.9 %Hf alloy after ECAP rises in 2.2 times compared with the quenched state. The aging leads to additional strength growth by 19%.


Sign in / Sign up

Export Citation Format

Share Document