scholarly journals Finite Element Dynamic Analysis on Residual Stress Distribution of Titanium Alloy and Titanium Matrix Composite after Shot Peening Treatment

Author(s):  
Lechun Xie ◽  
Zhou Wang ◽  
Chengxi Wang ◽  
Yan Wen ◽  
Liqiang Wang ◽  
...  
Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 462
Author(s):  
Zhou Wang ◽  
Ming Shi ◽  
Jin Gan ◽  
Xiaoli Wang ◽  
Ying Yang ◽  
...  

In order to investigate the effect of shot distance and impact sequence on the residual stress distribution of 42CrMo steel in shot peening (SP) finite element (FE) simulation, 3D dynamic models with order dimple pattern and stochastic dimple pattern were established via ABAQUS/Explicit 6.14, and the simulation results were compared with experiments. The results show that shot overlap has a significant effect on the residual stress distribution of peened parts. Meanwhile, there is a threshold (related to SP parameter) for shot distance in the vertical and horizontal directions. When the shot distance is greater than the threshold in this direction, the residual stress distribution after SP tends to be stable. The impact sequence has almost no effect on the impact of a small number of shots, but this effect will appear when the number of shots increases. It is necessary to avoid shot overlap and continuous impact of adjacent dimples when the FE model is established; on this basis, the distance between shots and the number of layers of the shots can be reduced as much as possible without affecting the residual stress distribution. In addition, the comparison of simulation and experimental results shows that the residual stress evaluation area consistent with the experimental measurement is essential to obtain accurate residual stress distribution in the FE simulation process.


Author(s):  
Mahenk Kumar Patanaik ◽  
Gaurav Tiwari ◽  
Akshay R Govande ◽  
B Ratna Sunil ◽  
Ravikumar Dumpala

Abstract In the present numerical study, the residual stresses generated during the shot peening process were evaluated using the finite element method. The influence of shot velocity on the residual stress distribution due to the indentation of a rigid shot over the target plate of alloy steel was studied. The finite element package ABAQUS 6.20 is used for simulating the shot peening process considering the target plate to be deformable. A parametric study was performed by introducing strain hardening rate as H1 = 800 MPa, keeping the dimension of target plate same with variation in shot velocity 20, 50, 75, 100, 125, and 150 m/s to check the behavior of residual stress distribution. As the indentation takes place over the metallic target plate, elastic-plastic deformation was observed. The indentation of the shot with a different velocity range causes the difference in the depth and size of the dent and induces the compressive residual stress. For perfectly plastic and the strain hardened material, the residual stress contour was simulated. The simulated results for strain hardened material show the significant change in the compressive residual stress in the sub-surface region of the target plate. It is evident from the results that the shot velocity has a significant effect on the residual stress distribution. The maximum compressive residual stress is achieved when the shot is indented at a velocity of 125 m/s.


1994 ◽  
Vol 364 ◽  
Author(s):  
X.-L. Wang ◽  
S. Spooner ◽  
C. R. Hubbard ◽  
P. J. Maziasz ◽  
G. M. Goodwin ◽  
...  

AbstractNeutron diffraction was used to measure the residual stress distribution in an FeAl weld overlay on steel. It was found that the residual stresses accumulated during welding were essentially removed by the post-weld heat treatment that was applied to the specimen; most residual stresses in the specimen developed during cooling following the post-weld heat treatment. The experimental data were compared with a plasto-elastic finite element analysis. While some disagreement exists in absolute strain values, there is satisfactory agreement in strain spatial distribution between the experimental data and the finite element analysis.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 827 ◽  
Author(s):  
Shuai Zhao ◽  
Yangjian Xu ◽  
Changliang Pan ◽  
Lihua Liang ◽  
Xiaogui Wang

A novel modeling method was proposed to provide an improved representation of the actual microstructure of TiB/Ti-6Al-4V discontinuously-reinforced titanium matrix composite (DRTMC). Based on the Thiessen polygon structure, the representative volume element (RVE) containing the complex microstructures of the DRTMC was first generated. Thereafter, by using multiple user-defined subroutines in the commercial finite element software ABAQUS, the application of asymmetric mesh periodic boundary conditions on the RVE was realized, and the equivalent elastic modulus of the DRTMC was determined according to the homogenization method. Through error analyses on the experimental and calculated results regarding the equivalent elastic parameters of the DRTMC, the rationality of generating the DRTMC finite element model by using the present method was validated. Finally, simulations based on four types of network-like models revealed that the present simplifications to the particle shape of the reinforcement phase had less of an influence on the overall composite strength. Moreover, the present study demonstrates that the DRTMC enhancement is mainly attributed to the matrix strengthening, rather than the load-transferring mechanism. The strengthening influences of the distribution forms of the reinforcement phases, including their distribution density and orientation, were studied further. It was found that both the higher distribution density and limited distribution orientation of the particles would increase the probability of overlapping and merging between particles, and; therefore, higher strength could be yielded when the volume fraction of the reinforcement phase reached a certain threshold. Owing to the versatility of the developed methods and programs, this work can provide a useful reference for the characterization of the mechanical properties of other composites types.


2014 ◽  
Vol 63 (9) ◽  
pp. 655-661 ◽  
Author(s):  
Shoichi YASUKAWA ◽  
Shinichi OHYA ◽  
Koichi TANGO ◽  
Kazuya TAKEDA ◽  
Akira TANGE

Sign in / Sign up

Export Citation Format

Share Document