scholarly journals An Estimation of “Energy” Magnitude Associated with a Possible Lithosphere-Atmosphere-Ionosphere Electromagnetic Coupling Before the Wenchuan MS8.0 Earthquake

Author(s):  
Mei Li ◽  
Wenxin Kong ◽  
Chong Yue ◽  
Shu Song ◽  
Chen Yu ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1197
Author(s):  
Xiaoyu Zhao ◽  
Aonan Zhu ◽  
Yaxin Wang ◽  
Yongjun Zhang ◽  
Xiaolong Zhang

In the present study, a sunflower-like nanostructure array composed of a series of synaptic nanoparticles and nanospheres was manufactured through an efficient and low-cost colloidal lithography technique. The primary electromagnetic field contribution generated by the synaptic nanoparticles of the surface array structures was also determined by a finite-difference time-domain software to simulate the hotspots. This structure exhibited high repeatability and excellent sensitivity; hence, it was used as a surface-enhanced Raman spectroscopy (SERS) active substrate to achieve a rapid detection of ultra-low concentrations of Alpha-fetoprotein (AFP). This study demonstrates the design of a plasmonic structure with strong electromagnetic coupling, which can be used for the rapid detection of AFP concentration in clinical medicine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li Yu ◽  
Yuzhang Liang ◽  
Shuwen Chu ◽  
Huixuan Gao ◽  
Qiao Wang ◽  
...  

AbstractStrong electromagnetic coupling among plasmonic nanostructures paves a new route toward efficient manipulation of photons. Particularly, plasmon-waveguide systems exhibit remarkable optical properties by simply tailoring the interaction among elementary elements. In this paper, we propose and demonstrate a freestanding bilayer plasmonic-waveguide structure exhibiting an extremely narrow transmission peak with efficiency up to 92%, the linewidth of only 0.14 nm and an excellent out of band rejection. The unexpected optical behavior considering metal loss is consistent with that of electromagnetic induced transparency, arising from the destructive interference of super-radiative nanowire dipolar mode and transversal magnetic waveguide mode. Furthermore, for slow light application, the designed plasmonic-waveguide structure has a high group index of approximately 1.2 × 105 at the maximum of the transmission band. In sensing application, its lowest sensing figure of merit is achieved up to 8500 due to the ultra-narrow linewidth of the transmission band. This work provides a valuable photonics design for developing high performance nano-photonic devices.


2001 ◽  
Vol 72 (S2) ◽  
pp. S173-S175 ◽  
Author(s):  
G. Hoffmann ◽  
R. Berndt

2007 ◽  
Vol 648 (1) ◽  
pp. 14-18 ◽  
Author(s):  
M.C. Bento ◽  
O. Bertolami ◽  
P. Torres

Sign in / Sign up

Export Citation Format

Share Document