scholarly journals Experimental and Numerical Studies on Phase Change Materials

Author(s):  
Cheng Wang ◽  
Ye Zhu



2019 ◽  
Vol 9 (20) ◽  
pp. 4334 ◽  
Author(s):  
José Henrique Nazzi Ehms ◽  
Rejane De Césaro Oliveski ◽  
Luiz Alberto Oliveira Rocha ◽  
Cesare Biserni ◽  
Massimo Garai

Phase change materials (PCMs) are classified according to their phase change process, temperature, and composition. The utilization of PCMs lies mainly in the field of solar energy and building applications as well as in industrial processes. The main advantage of such materials is the use of latent heat, which allows the storage of a large amount of thermal energy with small temperature variation, improving the energy efficiency of the system. The study of PCMs using computational fluid dynamics (CFD) is widespread and has been documented in several papers, following the tendency that CFD nowadays tends to become increasingly widespread. Numerical studies of solidification and melting processes use a combination of formulations to describe the physical phenomena related to such processes, these being mainly the latent heat and the velocity transition between the liquid and the solid phases. The methods used to describe the latent heat are divided into three main groups: source term methods (E-STM), enthalpy methods (E-EM), and temperature-transforming models (E-TTM). The description of the velocity transition is, in turn, divided into three main groups: switch-off methods (SOM), source term methods (STM), and variable viscosity methods (VVM). Since a full numerical model uses a combination of at least one of the methods for each phenomenon, several combinations are possible. The main objective of the present paper was to review the numerical approaches used to describe solidification and melting processes in fixed grid models. In the first part of the present review, we focus on the PCM classification and applications, as well as analyze the main features of solidification and melting processes in different container shapes and boundary conditions. Regarding numerical models adopted in phase-change processes, the review is focused on the fixed grid methods used to describe both latent heat and velocity transition between the phases. Additionally, we discuss the most common simplifications and boundary conditions used when studying solidification and melting processes, as well as the impact of such simplifications on computational cost. Afterwards, we compare the combinations of formulations used in numerical studies of solidification and melting processes, concluding that “enthalpy–porosity” is the most widespread numerical model used in PCM studies. Moreover, several combinations of formulations are barely explored. Regarding the simulation performance, we also show a new basic method that can be employed to evaluate the computing performance in transient numerical simulations.



Author(s):  
R.R. Thirumaniraj ◽  
K. Muninathan ◽  
V. Ashok Kumar ◽  
B. Jerickson Paul ◽  
Rahul R Rajendran


2019 ◽  
Vol 128 ◽  
pp. 04003
Author(s):  
Valery Gorobets ◽  
Ievgen Antypov ◽  
Yurii Bohdan ◽  
Viktor Trokhaniak

It is evident that nowadays materials with phase or chemical transformations are significantly considered to be in surpassing demand in the society being used for accumulating thermal energy. Furthermore, this usage leads to the process of increasing accumulated thermal energy per unit mass concentration to be achieved in a much beneficial and reliable manner. In comparison to these materials, well-known and widely–used solid and liquid ones are mainly associated with productivity and efficiencylosses. One of the methods, having desirable attributes for substantial enhancement in the energy productivity of phase change materials is proved to be the addition of solid nanoparticles with a large coefficient of thermal conductivity. This work focuses on numerical and experimental investigation the influence of nanoparticles of various materials and sizes on the processes of thermal energy storage in paraffin. In particular, the proceeding data of the thermophysical properties of paraffin with nanoparticles as being found by the optical spectroscopy method. Moreover, due to comprehensive results in experimental and numerical studies, the heat accumulating capacity of the phase change materials, as well as the dynamics and profile of the melting boundary around cylindrical heat sources were reported to be determined. Besides, the comparison of heatstorage capacity for phase change materials with and without nanoparticles is managed.



Author(s):  
S.S. Kruglov (Jr.) ◽  
◽  
G.L. Patashnikov ◽  
S.S. Kruglov (Sr.) ◽  
◽  
...  


2020 ◽  
Vol 51 (10) ◽  
pp. 925-935
Author(s):  
Shaozhen Guo ◽  
Guangming Xiao ◽  
Xian Wang ◽  
Yanxia Du


Author(s):  
Vishagen Ramasamy ◽  
Edward S. Richardson ◽  
Philippa Reed ◽  
Warren Hepples ◽  
Andrew Wheeler


Sign in / Sign up

Export Citation Format

Share Document