scholarly journals The Role of Vascular Smooth Muscle Cells in the Physiology and Pathophysiology of Blood Vessels

Author(s):  
Lucie Bacakova ◽  
Martina Travnickova ◽  
Elena Filova ◽  
Roman Matějka ◽  
Jana Stepanovska ◽  
...  
2020 ◽  
Vol 21 (14) ◽  
pp. 5160 ◽  
Author(s):  
Nadine Wehbe ◽  
Suzanne Awni Nasser ◽  
Yusra Al-Dhaheri ◽  
Rabah Iratni ◽  
Alessandra Bitto ◽  
...  

Vascular smooth muscle cells (VSMCs) are major components of blood vessels. They regulate physiological functions, such as vascular tone and blood flow. Under pathological conditions, VSMCs undergo a remodeling process known as phenotypic switching. During this process, VSMCs lose their contractility and acquire a synthetic phenotype, where they over-proliferate and migrate from the tunica media to the tunica interna, contributing to the occlusion of blood vessels. Since their discovery as effector proteins of cyclic adenosine 3′,5′-monophosphate (cAMP), exchange proteins activated by cAMP (EPACs) have been shown to play vital roles in a plethora of pathways in different cell systems. While extensive research to identify the role of EPAC in the vasculature has been conducted, much remains to be explored to resolve the reported discordance in EPAC’s effects. In this paper, we review the role of EPAC in VSMCs, namely its regulation of the vascular tone and phenotypic switching, with the likely involvement of reactive oxygen species (ROS) in the interplay between EPAC and its targets/effectors.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoqiang Qi ◽  
Yujing Zhang ◽  
Jing Li ◽  
Dongxia Hou ◽  
Yang Xiang

We assessed the role of PGC-1α (PPARγ coactivator-1 alpha) in glucose-induced proliferation, migration, and inflammatory gene expression of vascular smooth muscle cells (VSMCs). We carried out phagocytosis studies to assess the role of PGC-1α in transdifferentiation of VSMCs by flow cytometry. We found that high glucose stimulated proliferation, migration and inflammatory gene expression of VSMCs, but overexpression of PGC-1α attenuated the effects of glucose. In addition, overexpression of PGC-1α decreased mRNA and protein level of VSMCs-related genes, and induced macrophage-related gene expression, as well as phagocytosis of VSMCs. Therefore, PGC-1α inhibited glucose-induced proliferation, migration and inflammatory gene expression of VSMCs, which are key features in the pathology of atherosclerosis. More importantly, PGC-1α transdifferentiated VSMCs to a macrophage-like state. Such transdifferentiation possibly increased the portion of VSMCs-derived foam cells in the plaque and favored plaque stability.


Sign in / Sign up

Export Citation Format

Share Document