scholarly journals Recognition of Nucleosomes by Chromatin Factors: Lessons from Data-Driven Docking-Based Structures of Nucleosome-Protein Complexes

Author(s):  
Velten Horn ◽  
Hugo van Ingen
Author(s):  
E. H. Egelman ◽  
X. Yu

The RecA protein of E. coli has been shown to mediate genetic recombination, regulate its own synthesis, control the expression of other genes, act as a specific protease, form a helical polymer and have an ATPase activity, among other observed properties. The unusual filament formed by the RecA protein on DNA has not previously been shown to exist outside of bacteria. Within this filament, the 36 Å pitch of B-form DNA is extended to about 95 Å, the pitch of the RecA helix. We have now establishedthat similar nucleo-protein complexes are formed by bacteriophage and yeast proteins, and availableevidence suggests that this structure is universal across all of biology, including humans. Thus, understanding the function of the RecA protein will reveal basic mechanisms, in existence inall organisms, that are at the foundation of general genetic recombination and repair.Recombination at this moment is assuming an importance far greater than just pure biology. The association between chromosomal rearrangements and neoplasms has become stronger and stronger, and these rearrangements are most likely products of the recombinatory apparatus of the normal cell. Further, damage to DNA appears to be a major cause of cancer.


Author(s):  
C.A. Mannella ◽  
K.F. Buttle ◽  
K.A. O‘Farrell ◽  
A. Leith ◽  
M. Marko

Early transmission electron microscopy of plastic-embedded, thin-sectioned mitochondria indicated that there are numerous junctions between the outer and inner membranes of this organelle. More recent studies have suggested that the mitochondrial membrane contacts may be the site of protein complexes engaged in specialized functions, e.g., import of mitochondrial precursor proteins, adenine nucleotide channeling, and even intermembrane signalling. It has been suggested that the intermembrane contacts may be sites of membrane fusion involving non-bilayer lipid domains in the two membranes. However, despite growing interest in the nature and function of intramitochondrial contact sites, little is known about their structure.We are using electron microscopic tomography with the Albany HVEM to determine the internal organization of mitochondria. We have reconstructed a 0.6-μm section through an isolated, plasticembedded rat-liver mitochondrion by combining 123 projections collected by tilting (+/- 70°) around two perpendicular tilt axes. The resulting 3-D image has confirmed the basic inner-membrane organization inferred from lower-resolution reconstructions obtained from single-axis tomography.


Author(s):  
L. T. Germinario ◽  
J. Blackwell ◽  
J. Frank

This report describes the use of digital correlation and averaging methods 1,2 for the reconstruction of high dose electron micrographs of the chitin-protein complex from Megarhyssa ovipositor. Electron microscopy of uranyl acetate stained insect cuticle has demonstrated a hexagonal array of unstained chitin monofibrils, 2.4−3.0 nm in diameter, in a stained protein matrix3,4. Optical diffraction Indicated a hexagonal lattice with a = 5.1-8.3 nm3 A particularly well ordered complex is found in the ovipositor of the ichneumon fly Megarhyssa: the small angle x-ray data gives a = 7.25 nm, and the wide angle pattern shows that the protein consists of subunits arranged in a 61 helix, with an axial repeat of 3.06 nm5.


2005 ◽  
Vol 41 ◽  
pp. 15-30 ◽  
Author(s):  
Helen C. Ardley ◽  
Philip A. Robinson

The selectivity of the ubiquitin–26 S proteasome system (UPS) for a particular substrate protein relies on the interaction between a ubiquitin-conjugating enzyme (E2, of which a cell contains relatively few) and a ubiquitin–protein ligase (E3, of which there are possibly hundreds). Post-translational modifications of the protein substrate, such as phosphorylation or hydroxylation, are often required prior to its selection. In this way, the precise spatio-temporal targeting and degradation of a given substrate can be achieved. The E3s are a large, diverse group of proteins, characterized by one of several defining motifs. These include a HECT (homologous to E6-associated protein C-terminus), RING (really interesting new gene) or U-box (a modified RING motif without the full complement of Zn2+-binding ligands) domain. Whereas HECT E3s have a direct role in catalysis during ubiquitination, RING and U-box E3s facilitate protein ubiquitination. These latter two E3 types act as adaptor-like molecules. They bring an E2 and a substrate into sufficiently close proximity to promote the substrate's ubiquitination. Although many RING-type E3s, such as MDM2 (murine double minute clone 2 oncoprotein) and c-Cbl, can apparently act alone, others are found as components of much larger multi-protein complexes, such as the anaphase-promoting complex. Taken together, these multifaceted properties and interactions enable E3s to provide a powerful, and specific, mechanism for protein clearance within all cells of eukaryotic organisms. The importance of E3s is highlighted by the number of normal cellular processes they regulate, and the number of diseases associated with their loss of function or inappropriate targeting.


Sign in / Sign up

Export Citation Format

Share Document