scholarly journals Essence of Reducing Equivalent Transfer Powering Neutrophil Oxidative Microbicidal Action and Chemiluminescence

Author(s):  
Robert C. Allen
Keyword(s):  



2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hengkai Meng ◽  
Wei Zhang ◽  
Huawei Zhu ◽  
Fan Yang ◽  
Yanping Zhang ◽  
...  

Abstract Background An efficient supply of reducing equivalent is essential for chemicals production by engineered microbes. In phototrophic microbes, the NADPH generated from photosynthesis is the dominant form of reducing equivalent. However, most dehydrogenases prefer to utilize NADH as a cofactor. Thus, sufficient NADH supply is crucial to produce dehydrogenase-derived chemicals in cyanobacteria. Photosynthetic electron is the sole energy source and excess electrons are wasted in the light reactions of photosynthesis. Results Here we propose a novel strategy to direct the electrons to generate more ATP from light reactions to provide sufficient NADH for lactate production. To this end, we introduced an electron transport protein-encoding gene omcS into cyanobacterium Synechococcus elongatus UTEX 2973 and demonstrated that the introduced OmcS directs excess electrons from plastoquinone (PQ) to photosystem I (PSI) to stimulate cyclic electron transfer (CET). As a result, an approximately 30% increased intracellular ATP, 60% increased intracellular NADH concentrations and up to 60% increased biomass production with fourfold increased d-lactate production were achieved. Comparative transcriptome analysis showed upregulation of proteins involved in linear electron transfer (LET), CET, and downregulation of proteins involved in respiratory electron transfer (RET), giving hints to understand the increased levels of ATP and NADH. Conclusions This strategy provides a novel orthologous way to improve photosynthesis via enhancing CET and supply sufficient NADH for the photosynthetic production of chemicals.



2021 ◽  
Vol 13 (6) ◽  
pp. a040550
Author(s):  
Navdeep S. Chandel
Keyword(s):  


1982 ◽  
Vol 203 (3) ◽  
pp. 541-549 ◽  
Author(s):  
P Nicholls ◽  
G A Chanady

Titration of cyanide-incubated cytochrome c oxidase (ox heart cytochrome aa3) with ferrocytochrome c or with NNN'N'-tetramethyl-p-phenylenediamine initially introduces two reducing equivalents per mol of cytochrome aa3. The first equivalent reduces the cytochrome a haem iron; the second reducing equivalent is not associated with reduction of the 830 nm chromophores (e.p.r.-detectable copper) but is probably required for reduction of the e.p.r.-undetectable copper. Excess reductant introduces a third reducing equivalent into the cyanide complex of cytochrome aa3. During steady-state respiration in the presence of cytochrome c and ascorbate, the 830 nm chromophore is almost completely oxidized. It is reduced more slowly than cytochrome a on anaerobiosis. In the presence of formate or azide, some reduction at 830 nm can be seen in the steady state; in an oxygen-pulsed system, a decrease in steady-state reduction of cytochromes c and a is associated with ab increased reduction of the 830 nm species. In the formate-inhibited system the reduction of a3 on anaerobiosis shows a lag phase, the duration of which corresponds to the time taken for the 830 nm species to be reduced. It is concluded that the e.p.r.-undetectable copper (CuD) is reduced early in the reaction sequence, whereas the detectable copper (CUD) is reduced late. The latter species is probably that responsible for reduction of the cytochrome a3 haem. The magnetic association between undetectable copper and the a3 haem may not imply capability for electron transfer, which occurs more readily between cytochrome a3 and the 830 nm species.



Author(s):  
Catharina Taiko Migita ◽  
Hiroshi Fujii ◽  
Kathryn Mansfield Matera ◽  
Satoshi Takahashi ◽  
Hong Zhou ◽  
...  




1995 ◽  
Vol 38 (2) ◽  
pp. 221-227 ◽  
Author(s):  
Thomas D Scholz ◽  
Stacia L Koppenhafer
Keyword(s):  


2018 ◽  
Vol 259 ◽  
pp. 128-135 ◽  
Author(s):  
Cho Rong Lee ◽  
Changman Kim ◽  
Young Eun Song ◽  
Hyeonsung Im ◽  
You-Kwan Oh ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document