scholarly journals Improving Dual-Purpose Winter Wheat in the Southern Great Plains of the United States

Author(s):  
Frank Maulana ◽  
Joshua D. Anderson ◽  
Twain J. Butler ◽  
Xue-Feng Ma
2017 ◽  
Vol 109 (6) ◽  
pp. 2508-2520 ◽  
Author(s):  
S. Begna ◽  
S. Angadi ◽  
M. Stamm ◽  
A. Mesbah

Plant Disease ◽  
2015 ◽  
Vol 99 (9) ◽  
pp. 1261-1267 ◽  
Author(s):  
J. A. Kolmer ◽  
M. E. Hughes

Collections of Puccinia triticina were obtained from rust-infected leaves provided by cooperators throughout the United States and from wheat fields and breeding plots by USDA-ARS personnel and cooperators in the Great Plains, Ohio River Valley, and southeastern states in order to determine the virulence of the wheat leaf rust population in 2013. Single uredinial isolates (490 total) were derived from the collections and tested for virulence phenotype on 20 lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes. In 2013, 79 virulence phenotypes were described in the United States. Virulence phenotypes MBTNB, TNBGJ, and MCTNB were the three most common phenotypes. Phenotypes MBTNB and MCTNB are both virulent to Lr11, and MCTNB is virulent to Lr26. MBTNB and MCTNB were most common in the soft red winter wheat region of the southeastern states and Ohio Valley. Phenotype TNBGJ is virulent to Lr39/41 and was widely distributed throughout the hard red winter wheat region of the Great Plains. Isolates with virulence to Lr11, Lr18, and Lr26 were common in the southeastern states and Ohio Valley region. Isolates with virulence to Lr21, Lr24, and Lr39/41 were frequent in the hard red wheat region of the southern and northern Great Plains.


2018 ◽  
Vol 19 (4) ◽  
pp. 643-658 ◽  
Author(s):  
Paul X. Flanagan ◽  
Jeffrey B. Basara ◽  
Jason C. Furtado ◽  
Xiangming Xiao

Abstract Precipitation variability has increased in recent decades across the Great Plains (GP) of the United States. Drought and its associated drivers have been studied in the GP region; however, periods of excessive precipitation (pluvials) at seasonal to interannual scales have received less attention. This study narrows this knowledge gap with the overall goal of understanding GP precipitation variability during pluvial periods. Through composites of relevant atmospheric variables from the ECMWF twentieth-century reanalysis (ERA-20C), key differences between southern Great Plains (SGP) and northern Great Plains (NGP) pluvial periods are highlighted. The SGP pluvial pattern shows an area of negative height anomalies over the southwestern United States with wind anomalies consistent with frequent synoptic wave passages along a southward-shifted North Pacific jet. The NGP pattern during pluvial periods, by contrast, depicts anomalously low heights in the northwestern United States and an anomalously extended Pacific jet. Analysis of daily heavy precipitation events reveals the key drivers for these pluvial events, namely, an east–west height gradient and associated stronger poleward moisture fluxes. Therefore, the results show that pluvial years over the GP are likely driven by synoptic-scale processes rather than by anomalous seasonal precipitation driven by longer time-scale features. Overall, the results present a possible pathway to predicting the occurrence of pluvial years over the GP and understanding the causes of GP precipitation variability, potentially mitigating the threats of water scarcity and excesses for the public and agricultural sectors.


Plant Disease ◽  
2009 ◽  
Vol 93 (5) ◽  
pp. 538-544 ◽  
Author(s):  
J. A. Kolmer ◽  
D. L. Long ◽  
M. E. Hughes

In 2007, leaf rust of wheat was severe throughout the Great Plains region of North America. Yield losses in wheat due to leaf rust were estimated to be 14% in Kansas. Collections of Puccinia triticina were obtained from rust-infected leaves provided by cooperators throughout the United States and from surveys of wheat fields and nurseries in the Great Plains, Ohio River Valley, southeast, California, and Washington State in order to determine the virulence of the wheat leaf rust population in 2007. Single uredinial isolates (868 in total) were derived from the collections and tested for virulence phenotype on lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes Lr1, Lr2a, Lr2c, Lr3a, Lr9, Lr16, Lr24, Lr26, Lr3ka, Lr11, Lr17a, Lr30, LrB, Lr10, Lr14a, Lr18, Lr21, and Lr28, and on winter wheat lines with genes Lr41 and Lr42. Fifty-two virulence phenotypes were found. Virulence phenotypes TDBJG, MFPSC, and TDBJH were among the four most common phenotypes and were all virulent to resistance gene Lr24. These phenotypes were found throughout the Great Plains region. Phenotype MLDSD, with virulence to Lr9, Lr17, and Lr41, was also widely distributed in the Great Plains. In the soft red winter wheat region of the southeastern states, phenotypes TCRKG, with virulence to genes Lr11, Lr26, and Lr18, and MFGJH, with virulence to Lr24, Lr26, and Lr11, were among the common phenotypes. Virulence phenotypes with virulence to Lr16 were most frequent in the spring wheat region of the northern Great Plains. Virulence phenotypes with virulence to Lr11, Lr18, and Lr26 were most common in the soft red winter areas of the southeastern states and Ohio Valley. Virulence to Lr21 was not found in any of the tested isolates.


2014 ◽  
Vol 119 (6) ◽  
pp. 3438-3459 ◽  
Author(s):  
Wei Wu ◽  
Yangang Liu ◽  
Michael P. Jensen ◽  
Tami Toto ◽  
Michael J. Foster ◽  
...  

2003 ◽  
Vol 35 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Simeon Kaitibie ◽  
Francis M. Epplin ◽  
B. Wade Brorsen ◽  
Gerald W. Horn ◽  
Eugene G. Krenzer ◽  
...  

Dual-purpose winter wheat production is an important economic enterprise in the southern Great Plains of the United States. Because of the complex interactions involved in producing wheat grain and beef gain from a single crop, stocking density is an important decision. The objective of the research is to determine the stocking density that maximizes expected net returns from dual-purpose winter wheat production. Statistical tests rejected a conventional linear-response plateau function in favor of a linear-response stochastic plateau function. The optimal stocking density of 1.48 steers/ha (0.60 steers/acre) is 19% greater with a stochastic than with a nonstochastic plateau.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 93-94
Author(s):  
Micayla H West ◽  
Russell C Carrell ◽  
Sandra L Dillard

Abstract Dual-purpose wheat (Triticum aestivum L.) systems increase farm sustainability by diversifying on-farm income. While these systems are common in the Southern Great Plains of the United States, they are not often utilized in the Southeast. This study aimed to evaluate pre- and post-grazing herbage mass (HM) of four winter wheat varieties managed under a dual-purpose grazing and grain production system. The winter wheat varieties evaluated were generic feed-type wheat (mixed variety, Feed), seed-type wheat (‘GA Gore’) and two forage-type varieties, ‘AGS 2024’ (AGS) and ‘Pioneer 26R41’ (Pioneer). The experiment was a completely randomized block design with n = 4. Each plot was randomly assigned either as no-grazing (CON) or grazing (GF2). Plots were grazed with cow-calf pairs that were fasted 24 h before each grazing event. Grazing was considered complete when the average stubble height was 10 cm. Herbage mass was determined using three 0.1m2-quadrats per plot and clipping to a 10 cm stubble height before (PreG) and after (PostG) each grazing event. Forage samples were then dried at 45°C for 72 h. Data were analyzed using PROC GLIMMIX of SAS (SAS Inst., Cary, NC). Differences were declared at P < 0.05. Initial HM was greater for PreG than PostG (883 and 615 kg/ha, respectively; P < 0.01). Prior to grazing, AGS (1204 kg/ha) was greater (P < 0.02) than all other varieties. Pre-grazing, there were no differences among the other varieties (776 kg/ha; P > 0.14). Post-grazing, AGS had a greater HM than Seed (788 and 391 ka/ha, respectively; P = 0.04), while all other varieties were intermediate (642 kg/ha). Herbage mass was affected by grazing frequency with CON being greater (P < 0.01) than GF2 (993 and 691 kg/ha, respectively). These results indicate that both wheat variety and grazing treatment had an effect on dual-purpose wheat herbage mass.


Sign in / Sign up

Export Citation Format

Share Document