scholarly journals Optimal Stocking Density for Dual-Purpose Winter Wheat Production

2003 ◽  
Vol 35 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Simeon Kaitibie ◽  
Francis M. Epplin ◽  
B. Wade Brorsen ◽  
Gerald W. Horn ◽  
Eugene G. Krenzer ◽  
...  

Dual-purpose winter wheat production is an important economic enterprise in the southern Great Plains of the United States. Because of the complex interactions involved in producing wheat grain and beef gain from a single crop, stocking density is an important decision. The objective of the research is to determine the stocking density that maximizes expected net returns from dual-purpose winter wheat production. Statistical tests rejected a conventional linear-response plateau function in favor of a linear-response stochastic plateau function. The optimal stocking density of 1.48 steers/ha (0.60 steers/acre) is 19% greater with a stochastic than with a nonstochastic plateau.

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 93-94
Author(s):  
Micayla H West ◽  
Russell C Carrell ◽  
Sandra L Dillard

Abstract Dual-purpose wheat (Triticum aestivum L.) systems increase farm sustainability by diversifying on-farm income. While these systems are common in the Southern Great Plains of the United States, they are not often utilized in the Southeast. This study aimed to evaluate pre- and post-grazing herbage mass (HM) of four winter wheat varieties managed under a dual-purpose grazing and grain production system. The winter wheat varieties evaluated were generic feed-type wheat (mixed variety, Feed), seed-type wheat (‘GA Gore’) and two forage-type varieties, ‘AGS 2024’ (AGS) and ‘Pioneer 26R41’ (Pioneer). The experiment was a completely randomized block design with n = 4. Each plot was randomly assigned either as no-grazing (CON) or grazing (GF2). Plots were grazed with cow-calf pairs that were fasted 24 h before each grazing event. Grazing was considered complete when the average stubble height was 10 cm. Herbage mass was determined using three 0.1m2-quadrats per plot and clipping to a 10 cm stubble height before (PreG) and after (PostG) each grazing event. Forage samples were then dried at 45°C for 72 h. Data were analyzed using PROC GLIMMIX of SAS (SAS Inst., Cary, NC). Differences were declared at P < 0.05. Initial HM was greater for PreG than PostG (883 and 615 kg/ha, respectively; P < 0.01). Prior to grazing, AGS (1204 kg/ha) was greater (P < 0.02) than all other varieties. Pre-grazing, there were no differences among the other varieties (776 kg/ha; P > 0.14). Post-grazing, AGS had a greater HM than Seed (788 and 391 ka/ha, respectively; P = 0.04), while all other varieties were intermediate (642 kg/ha). Herbage mass was affected by grazing frequency with CON being greater (P < 0.01) than GF2 (993 and 691 kg/ha, respectively). These results indicate that both wheat variety and grazing treatment had an effect on dual-purpose wheat herbage mass.


2010 ◽  
Vol 42 (1) ◽  
pp. 87-103 ◽  
Author(s):  
Karen W. Taylor ◽  
Francis M. Epplin ◽  
B. Wade Brorsen ◽  
Brian G. Fieser ◽  
Gerald W. Horn

Dual-purpose winter wheat (fall-winter forage plus grain) production is an important economic enterprise in the southern Great Plains. Grazing termination to enable grain production is a critical decision. The objective is to determine the optimal grazing termination date for dual-purpose wheat. The value of knowing the occurrence of first hollow stem (FHS), a wheat growth threshold for grazing termination, is also determined. Results indicate that for most price situations grazing should be terminated at or before FHS. Marginal wheat returns from extended grazing were negative and the value of FHS information ranges from $1.50 to $10 per acre.


2021 ◽  
Vol 310 ◽  
pp. 108631
Author(s):  
Pradeep Wagle ◽  
Prasanna H. Gowda ◽  
Brian K. Northup ◽  
James P.S. Neel ◽  
Patrick J. Starks ◽  
...  

Plant Disease ◽  
2015 ◽  
Vol 99 (9) ◽  
pp. 1261-1267 ◽  
Author(s):  
J. A. Kolmer ◽  
M. E. Hughes

Collections of Puccinia triticina were obtained from rust-infected leaves provided by cooperators throughout the United States and from wheat fields and breeding plots by USDA-ARS personnel and cooperators in the Great Plains, Ohio River Valley, and southeastern states in order to determine the virulence of the wheat leaf rust population in 2013. Single uredinial isolates (490 total) were derived from the collections and tested for virulence phenotype on 20 lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes. In 2013, 79 virulence phenotypes were described in the United States. Virulence phenotypes MBTNB, TNBGJ, and MCTNB were the three most common phenotypes. Phenotypes MBTNB and MCTNB are both virulent to Lr11, and MCTNB is virulent to Lr26. MBTNB and MCTNB were most common in the soft red winter wheat region of the southeastern states and Ohio Valley. Phenotype TNBGJ is virulent to Lr39/41 and was widely distributed throughout the hard red winter wheat region of the Great Plains. Isolates with virulence to Lr11, Lr18, and Lr26 were common in the southeastern states and Ohio Valley region. Isolates with virulence to Lr21, Lr24, and Lr39/41 were frequent in the hard red wheat region of the southern and northern Great Plains.


2003 ◽  
Vol 83 (1) ◽  
pp. 107-108 ◽  
Author(s):  
S. D. Haley ◽  
M. D. Lazar ◽  
J. S. Quick ◽  
J. J. Johnson ◽  
G. L. Peterson ◽  
...  

Above, a hard red winter wheat (Triticum aestivum L. em. Thell.), is adapted for dryland production in the west central Great Plains of the United States. It carries a nontransgenic source of tolerance to imidazolinone herbicides derived by mutation induction with sodium azide. Above was developed cooperatively by the Colorado and Texas Agricultural Experiment Stations and released to seed producers in September 2001. Key words: Triticum aestivum, wheat (winter), cultivar description, herbicide tolerance


1991 ◽  
Vol 5 (2) ◽  
pp. 369-375 ◽  
Author(s):  
Gail A. Wicks ◽  
Robert N. Klein

We conducted research to determine if soybeans can be grown successfully in a no-till environment, in the semi-arid areas of the central Great Plains near North Platte, NE. Soybeans planted no-till into winter wheat stubble that was sprayed with glyphosate yielded more than when planted into soil that was rototilled in a winter wheat-soybean-fallow rotation. However, grain yield averaged only 420 kg ha-1during 1975, 1976, and 1977. No-till soybean grown in a winter wheat-grain sorghum-soybean rotation during 1982 through 1985 yielded an average of 1370 kg ha-1. Low yields were associated with lack of precipitation during the fallow period after winter wheat harvest or grain sorghum harvest and during the soybean pod elongation and filling period. Several herbicides gave excellent weed control in soybeans when applied either after wheat harvest, early preplant, or at planting time. None of the herbicides persisted long enough to reduce grain yields of winter wheat planted into the soybean residue. With present production costs these nonirrigated rotations are not economical in the semi-arid region of the central Great Plains of the United States.


Plant Disease ◽  
2009 ◽  
Vol 93 (5) ◽  
pp. 538-544 ◽  
Author(s):  
J. A. Kolmer ◽  
D. L. Long ◽  
M. E. Hughes

In 2007, leaf rust of wheat was severe throughout the Great Plains region of North America. Yield losses in wheat due to leaf rust were estimated to be 14% in Kansas. Collections of Puccinia triticina were obtained from rust-infected leaves provided by cooperators throughout the United States and from surveys of wheat fields and nurseries in the Great Plains, Ohio River Valley, southeast, California, and Washington State in order to determine the virulence of the wheat leaf rust population in 2007. Single uredinial isolates (868 in total) were derived from the collections and tested for virulence phenotype on lines of Thatcher wheat that are near-isogenic for leaf rust resistance genes Lr1, Lr2a, Lr2c, Lr3a, Lr9, Lr16, Lr24, Lr26, Lr3ka, Lr11, Lr17a, Lr30, LrB, Lr10, Lr14a, Lr18, Lr21, and Lr28, and on winter wheat lines with genes Lr41 and Lr42. Fifty-two virulence phenotypes were found. Virulence phenotypes TDBJG, MFPSC, and TDBJH were among the four most common phenotypes and were all virulent to resistance gene Lr24. These phenotypes were found throughout the Great Plains region. Phenotype MLDSD, with virulence to Lr9, Lr17, and Lr41, was also widely distributed in the Great Plains. In the soft red winter wheat region of the southeastern states, phenotypes TCRKG, with virulence to genes Lr11, Lr26, and Lr18, and MFGJH, with virulence to Lr24, Lr26, and Lr11, were among the common phenotypes. Virulence phenotypes with virulence to Lr16 were most frequent in the spring wheat region of the northern Great Plains. Virulence phenotypes with virulence to Lr11, Lr18, and Lr26 were most common in the soft red winter areas of the southeastern states and Ohio Valley. Virulence to Lr21 was not found in any of the tested isolates.


2006 ◽  
Vol 20 (2) ◽  
pp. 445-452 ◽  
Author(s):  
Jon C. Stone ◽  
Thomas F. Peeper ◽  
Amanda E. Stone

In the Southern Great Plains, producers of hard red winter wheat seek sustainable methods for controlling cheat and improving economic returns. Experiments were conducted at two sites in north-central Oklahoma to determine the effect of cheat management programs, with various weed control strategies, on cheat densities and total net returns. The cheat management programs, initiated following harvest of winter wheat, included conventionally tilled, double-crop grain sorghum (Sorghum bicolorL.) followed by soybean (Glycine maxL.); and continuous winter wheat. Rotating out of winter wheat for one growing season increased yield of succedent wheat up to 32% and 42% at Billings and Ponca City, respectively. Dockage due to cheat in the succedent wheat was reduced up to 78% and 87% by rotating out of winter wheat for one growing season at Billings and Ponca City, respectively. Cheat management programs including a crop rotation with herbicides applied to the grain sorghum, except for an application of atrazine + metolachlor at Ponca City, improved total net returns over the nontreated continuous wheat option. Cheat panicles in the succedent wheat were reduced up to 87% by rotation out of winter wheat for one growing season.


2000 ◽  
Vol 92 (6) ◽  
pp. 1109-1117 ◽  
Author(s):  
Thanh H. Dao ◽  
James H. Stiegler ◽  
J. C. Banks ◽  
Laurie Bogle‐Boerngen ◽  
Bud Adams

Sign in / Sign up

Export Citation Format

Share Document