scholarly journals Relative Biological Effectiveness Studies Using 3 MeV Proton Beam from Folded Tandem Ion Accelerator: An Experimental and Theoretical Approach

Author(s):  
Rajesha K. Nairy ◽  
Nagesh N. Bhat ◽  
K.B. Anjaria ◽  
Usha Yadav ◽  
Rajesh Chaurasia ◽  
...  

Proton being the easiest light ion to accelerate and achieve desired beam profile, has been pursued as a popular particulate radiation for therapy applications. In the present study, Saccharomyces cerevisiae D7 strain was used to estimate the RBE values of the 3 MeV proton beam, and an attempt was made to derive mathematical formula for calculating RBE value with respect to the dose. Dosimetry studies were carried out using Fricke dosimetry and Semiconductor Surface Barrier detector to calibrate the absorbed doses of Gamma chamber-1200 and Folded Tandem Ion Accelerator respectively. Gold standard cell survival assay and gene conversion assay were used to compare gamma and proton radiation induced cell death and genetic endpoint. Multi target single hit model was used to derive mathematical formula for RBE estimation. The results show a linear survival-dose response after proton radiation and sigmoid survival-dose response after gamma radiation treatment. The calculated RBE value from the survival and gene conversion studies was 1.60 and 3.93, respectively. The derived mathematical formula is very useful in calculating RBE value, which varies from 3.61 to 1.80 with increasing dose. The estimated RBE value from the mathematical formula is comparable with the experimental values. With the help of the present mathematical formulation, RBE value at any dose can be calculated in the exponential and sigmoidal regions of the survival curve without actually extending the experiment in that dose region, which is not possible using conventional methods.


2004 ◽  
Vol 14 (03n04) ◽  
pp. 141-146 ◽  
Author(s):  
DAISY JOSEPH ◽  
A. SAXENA ◽  
S. K. GUPTA ◽  
S. KAILAS

Proton Induced X-ray Emission Technique (PIXE) has been used in analyzing Gold standards of 22, 20, 18, and 14 karats with a proton beam of Energy 3.3 MeV at the newly commissioned Folded Tandem Ion Accelerator (FOTIA) at B.A.R.C, Trombay. Well resolved Au and Ag X-rays were detected at a current of 3 nA . Percentage values of gold and silver were calculated and were checked with those obtained by Energy Dispersive X-ray Fluorescence (EDXRF) Method and were found to be in agreement with the certified values as well as those obtained by XRF.



Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1889
Author(s):  
Arthur Bongrand ◽  
Charbel Koumeir ◽  
Daphnée Villoing ◽  
Arnaud Guertin ◽  
Ferid Haddad ◽  
...  

Proton therapy (PRT) is an irradiation technique that aims at limiting normal tissue damage while maintaining the tumor response. To study its specificities, the ARRONAX cyclotron is currently developing a preclinical structure compatible with biological experiments. A prerequisite is to identify and control uncertainties on the ARRONAX beamline, which can lead to significant biases in the observed biological results and dose–response relationships, as for any facility. This paper summarizes and quantifies the impact of uncertainty on proton range, absorbed dose, and dose homogeneity in a preclinical context of cell or small animal irradiation on the Bragg curve, using Monte Carlo simulations. All possible sources of uncertainty were investigated and discussed independently. Those with a significant impact were identified, and protocols were established to reduce their consequences. Overall, the uncertainties evaluated were similar to those from clinical practice and are considered compatible with the performance of radiobiological experiments, as well as the study of dose–response relationships on this proton beam. Another conclusion of this study is that Monte Carlo simulations can be used to help build preclinical lines in other setups.



2010 ◽  
Vol 37 (5) ◽  
pp. 1942-1947 ◽  
Author(s):  
Bijan Arjomandy ◽  
Ramesh Tailor ◽  
Aman Anand ◽  
Narayan Sahoo ◽  
Michael Gillin ◽  
...  


1981 ◽  
Vol 85 (2) ◽  
pp. 349 ◽  
Author(s):  
P. Unrau ◽  
F. K. Zimmermann ◽  
L. D. Johnson




2018 ◽  
Author(s):  
Ricciotti Emanuela ◽  
Dimitra Sarantopoulou ◽  
Gregory R. Grant ◽  
Jenine K. Sanzari ◽  
Gabriel S. Krigsfeld ◽  
...  

AbstractPurpose. The cardiovascular biology of proton radiotherapy is not well understood. We aimed to compare the genomic dose-response to proton and gamma radiation of the mouse aorta to assess whether their vascular effects may diverge.Materials and methods.We performed comparative RNA sequencing of the aorta following (4 hrs) total-body proton and gamma irradiation (0.5 - 200 cGy whole body dose, 10 dose levels) of conscious mice. A trend analysis identified genes that showed a dose response.Results.While fewer genes were dose-responsive to proton than gamma radiation (29 vs. 194 genes;q-value ≤ 0.1), the magnitude of the effect was greater. Highly responsive genes were enriched for radiation response pathways (DNA damage, apoptosis, cellular stress and inflammation;p-value ≤ 0.01). Gamma, but not proton radiation induced additionally genes in vasculature specific pathways. Genes responsive to both radiation types showed almost perfectly superimposable dose-response relationships.Conclusions.Despite the activation of canonical radiation response pathways by both radiation types, we detected marked differences in the genomic response of the murine aorta. Models of cardiovascular risk based on photon radiation may not accurately predict the risk associated with proton radiation.



2021 ◽  
Vol 9 ◽  
Author(s):  
A. Bianchi ◽  
A. Selva ◽  
P. Colautti ◽  
G. Petringa ◽  
P. Cirrone ◽  
...  

Experimental microdosimetry measures the energy deposited in a microscopic sensitive volume (SV) by single ionizing particles traversing the SV or passing by. The fundamental advantage of experimental microdosimetry over the computational approach is that the first allows to determine distributions of energy deposition when information on the energy and nature of the charged particles at the point of interest is incomplete or fragmentary. This is almost always the case in radiation protection applications, but discrepancies between the modelled and the actual scenarios should be considered also in radiation therapy. Models for physical reality are always imperfect and rely both on basic input data and on assumptions and simplifications that are necessarily implemented. Furthermore, unintended events due to human errors or machine/system failures can be minimized but cannot be completely avoided.Though in proton radiation therapy (PRT) a constant relative biological effectiveness (RBE) of 1.1 is assumed, there is evidence of an increasing RBE towards the end of the proton penetration depth. Treatment Planning Systems (TPS) that take into account a variable linear energy transfer (LET) or RBE are already available and could be implemented in PRT in the near future. However, while the calculated dose distributions produced by the TPS are routinely verified with ionization chambers as part of the quality assurance program of every radiotherapy center, there is no commercial detector currently available to perform routine verification of the radiation quality, calculated by the TPS through LET or RBE distributions. Verification of calculated LET is required to make sure that a complex robustly optimized plan will be delivered as planned. The scientific community is coming to conclusion that a new domain of Quality Assurance additionally to the physical dose verification is required, and microdosimetry can be the right approach to address that. A first important prerequisite is the repeatability and reproducibility of microdosimetric measurements. This work aims at studying experimentally the repeatability and reproducibility of microdosimetric measurements performed with a miniaturized Tissue Equivalent Proportional Counter (mini-TEPC) in a 62 MeV proton beam. Experiments were carried out within 1 year and without propane gas recharging and by different operators. RBE was also calculated by applying the Loncol’s weighting function r(y) to microdosimetric distributions. Demonstration of reproducibility of measured microdosimetric quantities y¯F, y¯D and RBE10 in 62 MeV proton beam makes this TEPC a possible metrological tool for LET verification in proton therapy. Future characterization will be performed in higher energy proton beams.



2008 ◽  
Vol 114 ◽  
pp. 012022
Author(s):  
S K Gupta ◽  
A Agarwal ◽  
S K Singh ◽  
A Basu ◽  
Sapna P ◽  
...  


Pramana ◽  
2001 ◽  
Vol 57 (2-3) ◽  
pp. 639-650 ◽  
Author(s):  
P Singh


2008 ◽  
Author(s):  
M. Ikegami ◽  
S. Nakamura ◽  
Y. Iwashita ◽  
T. Shirai ◽  
H. Souda ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document