Recent Techniques and Applications in Ionizing Radiation Research
Latest Publications


TOTAL DOCUMENTS

9
(FIVE YEARS 9)

H-INDEX

0
(FIVE YEARS 0)

Published By Intechopen

9781839628849, 9781839628856

Author(s):  
Ali Farhan Nader Alrekabi

The measurement of radon, thoron and their progeny concentrations also leads to the knowledge of the presence of radioactive elements, which are the sources of these elements such as Uranium-238 and Thorium-232. Using of Solid State Nuclear Tracks Detectors (SSNTDs) it is probably the most widely applied for long term radon measurements. In this chapter, we derived the most important mathematical relationships that researchers need in radon measurements to calculate such as average radon concentration, exhalation rate, equilibrium factor, radon diffusion coefficient and transmission factor to get actual radon concentration in air atmosphere. The relationship between theoretical and experiment calibration drive and other mathematical relationships are given in this chapter.


Author(s):  
Pooneh Saidi ◽  
Mahdi Sadeghi

This study will briefly explain the production of 103Pd via cyclotron for brachytherapy use. The excitation functions of 103Rh(p,n)103Pd and 103Rh(d,2n)103Pd reactions were calculated using ALICE/91, ALICE/ASH, and TALYS-1.2 codes and compared with published data. Production of 103Pd was done via 103Rh(p,n)103Pd nuclear reaction. The target was bombarded with 18 MeV protons at 200 μA beam current for 15 h. After irradiation and radiochemical separation of the electroplated rhodium target, at the optimum condition, 103Pd was absorbed into Amberlite®IR-93 resin. The preparation of the brachytherapy seed, which is loaded by the resin beads, has also been presented. At least, the method to determine the dosimetric parameters for the seed by experimental measurement has been presented.


Author(s):  
Dolchinkov Nikolay Todorov

In the months of February and March 2017, I conducted a survey among 3 population groups and 392 participants on the state of the systems for monitoring and alerting the population, so the information received is up-to-date. The information received and summarized should not be taken as a constant, since the situation is changing dynamically, both in terms of the political situation in Bulgaria and the region and the intentions of our neighbors in relation to sites that present radiation risks and in terms of meteorological elements that influence possible radioactive contamination. Particularly dynamic is the development of meteorological elements that need to be analyzed very thoroughly in the event of a nuclear accident or incident. The results and consequences of the closure of uranium production and its processing in Bulgaria, as well as the storage of radioactive waste in Bulgaria, are shown. The results of the study are presented, diagrams are presented, and analyses and directions for follow-up are made.


Author(s):  
Adriana Beatriz Martínez ◽  
Carola Bettina Bozal ◽  
Nadia Soledad Orona ◽  
Deborah Ruth Tasat ◽  
Angela Matilde Ubios

The study of uranium toxicity is very important for public health in general and especially for workers involved in the processes of uranium mining and milling because of the immediate and/or mediate risks of exposure. Most available studies show unsuccessful attempts to eliminate uranium from target organs once the poisoning has occurred. Our group has managed to avoid damage to target organs (short-term kidney and long-term bone damage) in a high percentage of animals treated with lethal doses of uranyl nitrate through the effective chelating action of a single dose of bisodic etidronate. In this context, the contributions of our team and other groups working on chelating therapies provide a starting point for progress in the search for agents for preventing and/or reducing the toxic effects of uranium.


Author(s):  
Eugenia Malchukova

Effects of ionizing irradiation on defect creation processes have been studied in rare earth (RE)-doped (RE = Sm, Gd, Eu, Ce, Nd) aluminoborosilicate glass with use of the electron paramagnetic resonance (EPR) and optical spectroscopy. As a function of RE ion nature, we observe that doping significantly influences the nature of the defects produced during irradiation and more specifically the relative proportions between hole and electron defect centers. Strong decrease of defect production efficiency under ionizing radiation independence on both the RE doping content and on the relative stability of the RE different oxidation states is also clearly revealed. The results could be explained by dynamical reversible trapping of the electron-hole pairs produced during irradiation on the different RE charge states as well as by RE segregation and pre-existing defects speciation in ABS glass structure.


Author(s):  
Entesar H. Elaraby

This chapter is primarily concerned with natural radioactive decay. Generally speaking, there are two types of natural radioactive decays: alpha decays “which contain two neutrons and two protons” emitted from radon gas; additionally, nuclear decay by emission of photons (γ-decay). This chapter aims to describe γ and alpha loss of nuclei and demonstrates how to measure the radioactive material naturally using solid-state nuclear track detector (SSNTD) and high purity Germanium detector (HPGD). Also, methods of measuring the different characteristics of the alpha particle using the track profile technique (TPT) will be presented. Finally, results will be presented in the alpha and radon measurements. The concentration of aerosols has attracted much attention by many researchers in the past decade. Research has shown that aerosols are responsible for harmful chemical reactions that lead to the physical degradation of the stratospheric ozone layer. Moreover, aerosols increase the risk of developing cancer in humans when inhaled in large proportions. Therefore, neutron activation analysis (NAA) is a very important application to measure these concentrations.


Author(s):  
Tayseer I. Al-Naggar ◽  
Doaa H. Shabaan

This chapter show the natural of radioactivity as alpha particle which produce from decaying of radium to radon so in this chapter describe the radon in some types of household food (coffee, tea, powder milk, rice, flour, cornstarch, and powder coconut) and different types of salt by using Solid State Nuclear Track Detectors (SSNTD), were analyzed by closed-can technique (CR-39). Many food items contain natural sources of salt. Salt analysis is very important due to its high consumption by the population and for its medicinal use. Analysis the concentrations of Radon-222 and Radium-226 for different types of household foods samples are very substantial for realizing the comparative contributions of specific substances to the whole radon content set within the human body. After study it is found that the average values of annual effective dose in mSv/y are within the recommended limit of ICRP values except its values for cornstarch and sugar are relatively high, and there are a wide range of variations in the values of transfer factor for Rn-222, and Ra-226 for all types.


Author(s):  
Rajesha K. Nairy ◽  
Nagesh N. Bhat ◽  
K.B. Anjaria ◽  
Usha Yadav ◽  
Rajesh Chaurasia ◽  
...  

Proton being the easiest light ion to accelerate and achieve desired beam profile, has been pursued as a popular particulate radiation for therapy applications. In the present study, Saccharomyces cerevisiae D7 strain was used to estimate the RBE values of the 3 MeV proton beam, and an attempt was made to derive mathematical formula for calculating RBE value with respect to the dose. Dosimetry studies were carried out using Fricke dosimetry and Semiconductor Surface Barrier detector to calibrate the absorbed doses of Gamma chamber-1200 and Folded Tandem Ion Accelerator respectively. Gold standard cell survival assay and gene conversion assay were used to compare gamma and proton radiation induced cell death and genetic endpoint. Multi target single hit model was used to derive mathematical formula for RBE estimation. The results show a linear survival-dose response after proton radiation and sigmoid survival-dose response after gamma radiation treatment. The calculated RBE value from the survival and gene conversion studies was 1.60 and 3.93, respectively. The derived mathematical formula is very useful in calculating RBE value, which varies from 3.61 to 1.80 with increasing dose. The estimated RBE value from the mathematical formula is comparable with the experimental values. With the help of the present mathematical formulation, RBE value at any dose can be calculated in the exponential and sigmoidal regions of the survival curve without actually extending the experiment in that dose region, which is not possible using conventional methods.


Author(s):  
Terman Frometa-Castillo ◽  
Anil Pyakuryal ◽  
Amadeo Wals-Zurita ◽  
Asghar Mesbahi

The current radiosensitive studies are described with linear-quadratic (LQ) cell survival (S) model for one fraction with a dose d. As result of assuming all sublethally damaged cells (SLDCs) are completely repaired during the interfractions, that is, no presence of SLDCs, the survived cells are calculated for a n-fractionated regimen with the LQ S(n,D) model. A mathematically processed subpart of LQS(n,D) is the biologically effective dose (BED) that is used for evaluating a so-called “biological dose.” The interactions of ionizing radiation with a living tissue can produce partial death or sublethal damage from healthy or sublethally damaged cells. The proportions of the killed and sub-lethally damaged cells define the radiation biological effects (RBEfs). Computational simulations using RBEFs for fractionated regimens let calculating tumor control probability. While the derivation of the LQ S(n,D) considers a 100% cell repair, that is, 0% of sublethally damaged cells (SLDCs), the radiobiological simulators take into account the presence of SLDCs, as well as a cell repair <100% during the interfractions and interruption. Given “biological dose” does not exist, but RBEf, there was need for creating the BED. It is shown how some uses of BED, like the derivation of EQ2D expression, can be done directly with the LQ S(n,D).


Sign in / Sign up

Export Citation Format

Share Document