scholarly journals Assessment of Ecological Disturbance Caused by Flood and Fire in Assam Forests, India, Using MODIS Time Series Data of 2001-2011

2020 ◽  
Author(s):  
Dibyendu Dutta ◽  
Akanksha Balha ◽  
Prabir Kumar Das ◽  
Pragyan Jain ◽  
Libeesh Lukose ◽  
...  

The forest area of Assam State is known for its rich biodiversity. In the present study, the disturbance regime within the Assam forest area caused by periodic flood and forest fire, was assessed using the Moderate Resolution Imaging Spectroradiometer (MODIS) time-series (2001–2011) data. The MODIS Global Disturbance Index (MGDI) images were generated using MODIS derived Enhanced Vegetation Index (EVI) and Land Surface Temperature (LST) images. The temporal intensity of flood and forest fire in sixteen representative forests was analyzed to develop the MGDI based thresholds for detecting the disturbed area. The threshold for the non-instantaneous disturbance, i.e. flood, was found to be 107% whereas it was 111% for instantaneous disturbance, i.e. forest fire. The thresholds were applied on the MGDI images to delineate disturbed caused by flood and fire, separately for each year. The time-series disturbance areas were integrated over the years (2001–2011) to generate the classified disturbance prone maps.

2018 ◽  
Vol 69 (5) ◽  
pp. 658 ◽  
Author(s):  
Liwei Xing ◽  
Zhenguo Niu ◽  
Panpan Xu ◽  
Dachong Li

Globally, wetland loss and degradation have become serious environmental and ecological issues. Wetland monitoring of Ramsar sites in China is important for developing reasonable strategies to protect wetlands. Satellite image time series may be used for the long-term monitoring of wetland ecosystems. The present study used moderate-resolution imaging spectroradiometer (MODIS) time series data collected in 2001 and 2013 for 20 Ramsar sites in China and assessed the environmental status of these reserves using landscape metrics. The results showed that specific seasonal wetland classes, such as flooded mud, permanent water and seasonal marshes, can be identified using MODIS time series data with acceptable accuracy. In addition to wetland area, we suggest using other landscape metrics, including landscape integrity and landscape disturbance or degradation indices, to assess wetland environmental quality. The slight wetland loss (0.8%) noted in the 20 reserves evaluated herein could indicate the effectiveness of efforts of the Chinese government and local government agencies to protect Ramsar sites. The existing unfavourable environmental conditions, which were manifested by low landscape integrity and high landscape disturbance or degradation for some reserves, were caused primarily by increasing water requirements outside the reserves and by agricultural development within reserves. Therefore, determining how to balance relationships between economic development and ecological protection of the reserves will be important in the future.


2020 ◽  
Vol 12 (8) ◽  
pp. 3227 ◽  
Author(s):  
Anjar Dimara Sakti ◽  
Wataru Takeuchi

It is necessary to develop a sustainable food production system to ensure future food security around the globe. Cropping intensity and sowing month are two essential parameters for analyzing the food–water–climate tradeoff as food sustainability indicators. This study presents a global-scale analysis of cropping intensity and sowing month from 2000 to 2015, divided into three groups of years. The study methodology integrates the satellite-derived normalized vegetation index (NDVI) of 16-day composite Moderate Resolution Imaging Spectroradiometer (MODIS) and daily land-surface-water coverage (LSWC) data obtained from The Advanced Microwave Scanning Radiometer (AMSR-E/2) in 1-km aggregate pixel resolution. A fast Fourier transform was applied to normalize the MODIS NDVI time-series data. By using advanced methods with intensive optic and microwave time-series data, this study set out to anticipate potential dynamic changes in global cropland activity over 15 years representing the Millennium Development Goal period. These products are the first global datasets that provide information on crop activities in 15-year data derived from optic and microwave satellite data. The results show that in 2000–2005, the total global double-crop intensity was 7.1 million km2, which increased to 8.3 million km2 in 2006–2010, and then to approximately 8.6 million km2 in 2011–2015. In the same periods, global triple-crop agriculture showed a rapid positive growth from 0.73 to 1.12 and then 1.28 million km2, respectively. The results show that Asia dominated double- and triple-crop growth, while showcasing the expansion of single-cropping area in Africa. The finer spatial resolution, combined with a long-term global analysis, means that this methodology has the potential to be applied in several sustainability studies, from global- to local-level perspectives.


2010 ◽  
Vol 19 (1) ◽  
pp. 75 ◽  
Author(s):  
Willem J. D. van Leeuwen ◽  
Grant M. Casady ◽  
Daniel G. Neary ◽  
Susana Bautista ◽  
José Antonio Alloza ◽  
...  

Due to the challenges faced by resource managers in maintaining post-fire ecosystem health, there is a need for methods to assess the ecological consequences of disturbances. This research examines an approach for assessing changes in post-fire vegetation dynamics for sites in Spain, Israel and the USA that burned in 1998, 1999 and 2002 respectively. Moderate Resolution Imaging Spectroradiometer satellite Normalized Difference Vegetation Index (NDVI) time-series data (2000–07) are used for all sites to characterise and track the seasonal and spatial changes in vegetation response. Post-fire trends and metrics for burned areas are evaluated and compared with unburned reference sites to account for the influence of local environmental conditions. Time-series data interpretation provides insights into climatic influences on the post-fire vegetation. Although only two sites show increases in post-fire vegetation, all sites show declines in heterogeneity across the site. The evaluation of land surface phenological metrics, including the start and end of the season, the base and peak NDVI, and the integrated seasonal NDVI, show promising results, indicating trends in some measures of post-fire phenology. Results indicate that this monitoring approach, based on readily available satellite-based time-series vegetation data, provides a valuable tool for assessing post-fire vegetation response.


2015 ◽  
Vol 79 (2) ◽  
pp. 775-790 ◽  
Author(s):  
Dibyendu Dutta ◽  
Prabir Kumar Das ◽  
Soubhik Paul ◽  
Jaswant Raj Sharma ◽  
Vinay Kumar Dadhwal

2020 ◽  
Vol 12 (4) ◽  
pp. 1313
Author(s):  
Leah M. Mungai ◽  
Joseph P. Messina ◽  
Sieglinde Snapp

This study aims to assess spatial patterns of Malawian agricultural productivity trends to elucidate the influence of weather and edaphic properties on Moderate Resolution Imaging Spectroradiometer (MODIS)-Normalized Difference Vegetation Index (NDVI) seasonal time series data over a decade (2006–2017). Spatially-located positive trends in the time series that can’t otherwise be accounted for are considered as evidence of farmer management and agricultural intensification. A second set of data provides further insights, using spatial distribution of farmer reported maize yield, inorganic and organic inputs use, and farmer reported soil quality information from the Malawi Integrated Household Survey (IHS3) and (IHS4), implemented between 2010–2011 and 2016–2017, respectively. Overall, remote-sensing identified areas of intensifying agriculture as not fully explained by biophysical drivers. Further, productivity trends for maize crop across Malawi show a decreasing trend over a decade (2006–2017). This is consistent with survey data, as national farmer reported yields showed low yields across Malawi, where 61% (2010–11) and 69% (2016–17) reported yields as being less than 1000 Kilograms/Hectare. Yields were markedly low in the southern region of Malawi, similar to remote sensing observations. Our generalized models provide contextual information for stakeholders on sustainability of productivity and can assist in targeting resources in needed areas. More in-depth research would improve detection of drivers of agricultural variability.


2019 ◽  
Vol 11 (24) ◽  
pp. 3023 ◽  
Author(s):  
Shuai Xie ◽  
Liangyun Liu ◽  
Xiao Zhang ◽  
Jiangning Yang ◽  
Xidong Chen ◽  
...  

The Google Earth Engine (GEE) has emerged as an essential cloud-based platform for land-cover classification as it provides massive amounts of multi-source satellite data and high-performance computation service. This paper proposed an automatic land-cover classification method using time-series Landsat data on the GEE cloud-based platform. The Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover products (MCD12Q1.006) with the International Geosphere–Biosphere Program (IGBP) classification scheme were used to provide accurate training samples using the rules of pixel filtering and spectral filtering, which resulted in an overall accuracy (OA) of 99.2%. Two types of spectral–temporal features (percentile composited features and median composited monthly features) generated from all available Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data from the year 2010 ± 1 were used as input features to a Random Forest (RF) classifier for land-cover classification. The results showed that the monthly features outperformed the percentile features, giving an average OA of 80% against 77%. In addition, the monthly features composited using the median outperformed those composited using the maximum Normalized Difference Vegetation Index (NDVI) with an average OA of 80% against 78%. Therefore, the proposed method is able to generate accurate land-cover mapping automatically based on the GEE cloud-based platform, which is promising for regional and global land-cover mapping.


2019 ◽  
Vol 11 (10) ◽  
pp. 1193 ◽  
Author(s):  
Abdallah Shanableh ◽  
Rami Al-Ruzouq ◽  
Mohamed Barakat A. Gibril ◽  
Cristina Flesia ◽  
Saeed AL-Mansoori

Whiting events in seas and lakes are a natural phenomenon caused by suspended calcium carbonate (CaCO3) particles. The Arabian Gulf, which is a semi-enclosed sea, is prone to extensive whiting that covers tens of thousands of square kilometres. Despite the extent and frequency of whiting events in the Gulf, studies documenting the whiting phenomenon are lacking. Therefore, the primary objective of this study was to detect, map and document the spatial and temporal distributions of whiting events in the Gulf using daily images acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra and Aqua satellites from 2002 to 2018. A method integrating a geographic object-based image analysis, the correlation-based feature selection technique (CFS), the adaptive boosting decision tree (AdaBoost DT) and the rule-based classification were used in the study to detect, quantify and assess whiting events in the Gulf from the MODIS data. Firstly, a multiresolution segmentation was optimised using unsupervised quality measures. Secondly, a set of spectral bands and indices were investigated using the CFS to select the most relevant feature(s). Thirdly, a generic AdaBoost DT model and a rule-based classification were adopted to classify the MODIS time series data. Finally, the developed classification model was compared with various tree-based classifiers such as random forest, a single DT and gradient boosted DT. Results showed that both the combination of the mean of the green spectral band and the normalised difference index between the green and blue bands (NDGB), or the combination of the NDGB and the colour index for estimating the concentrations of calcium carbonates (CI) of the image objects, were the most significant features for detecting whiting. Moreover, the generic AdaBoost DT classification model outperformed the other tested tree-based classifiers with an overall accuracy of 97.86% and a kappa coefficient of 0.97. The whiting events during the study period (2002–2018) occurred exclusively during the winter season (November to March) and mostly in February. Geographically, the whiting events covered areas ranging from 12,000 km2 to 60,000 km2 and were mainly located along the southwest coast of the Gulf. The duration of most whiting events was 2 to 6 days, with some events extending as long as 8 to 11 days. The study documented the spatiotemporal distribution of whiting events in the Gulf from 2002 to 2018 and presented an effective tool for detecting and motoring whiting events.


2019 ◽  
Vol 11 (21) ◽  
pp. 2558 ◽  
Author(s):  
Emily Myers ◽  
John Kerekes ◽  
Craig Daughtry ◽  
Andrew Russ

Agricultural monitoring is an important application of earth-observing satellite systems. In particular, image time-series data are often fit to functions called shape models that are used to derive phenological transition dates or predict yield. This paper aimed to investigate the impact of imaging frequency on model fitting and estimation of corn phenological transition timing. Images (PlanetScope 4-band surface reflectance) and in situ measurements (Soil Plant Analysis Development (SPAD) and leaf area index (LAI)) were collected over a corn field in the mid-Atlantic during the 2018 growing season. Correlation was performed between candidate vegetation indices and SPAD and LAI measurements. The Normalized Difference Vegetation Index (NDVI) was chosen for shape model fitting based on the ground truth correlation and initial fitting results. Plot-average NDVI time-series were cleaned and fit to an asymmetric double sigmoid function, from which the day of year (DOY) of six different function parameters were extracted. These points were related to ground-measured phenological stages. New time-series were then created by removing images from the original time-series, so that average temporal spacing between images ranged from 3 to 24 days. Fitting was performed on the resampled time-series, and phenological transition dates were recalculated. Average range of estimated dates increased by 1 day and average absolute deviation between dates estimated from original and resampled time-series data increased by 1/3 of a day for every day of increase in average revisit interval. In the context of this study, higher imaging frequency led to greater precision in estimates of shape model fitting parameters used to estimate corn phenological transition timing.


Sign in / Sign up

Export Citation Format

Share Document