Specific Wear Rate Modeling of Polytetraflouroethylene Composites Via Artificial Neural Network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) Tools
Lately, artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models have been recognized as potential and good tools for mathematical modeling of complex and nonlinear behavior of specific wear rate (SWR) of composite materials. In this study, modeling and prediction of specific wear rate of polytetraflouroethylene (PTFE) composites using FFNN and ANFIS models were examined. The performances of the models were compared with conventional multilinear regression (MLR) model. To establish the proper choice of input variables, a sensitivity analysis was performed to determine the most influential parameter on the SWR. The modeling and prediction performance results showed that FFNN and ANFIS models outperformed that of the MLR model by 45.36% and 45.80%, respectively. The sensitivity analysis findings revealed that the volume fraction of reinforcement and density of the composites and sliding distance were the most and more influential parameters, respectively. The goodness of fit of the ANN and ANFIS models was further checked using t-test at 5% level of significance and the results proved that ANN and ANFIS models are powerful and efficient tools in dealing with complex and nonlinear behavior of SWR of the PTFE composites.