scholarly journals The Optimal System for Complex Series-Parallel Systems with Cold Standby Units: A Comparative Analysis Approach

Author(s):  
Ibrahim Yusuf ◽  
Ismail Muhammad Musa

The purpose of this research is to propose three reliability models (configurations) with standby units and to study the optimum configuration between configurations analytically and numerically. The chapter considered the need for 60 MW generators in three different configurations. Configuration 1 has four 15 MW primary units, two 15 MW cold standby units and one 30 MW cold standby unit; Configuration 2 has three 20 MW primary units, three 20 cold standby units; Configuration 3 has two 30 MW primary units and three 30 MW cold standby units. Some reliability features of series–parallel systems under minor and complete failure were studied and contrasted by the current. Failure and repair time of all units is assumed to be exponentially distributed. Explanatory expressions for system characteristics such as system availability, mean time to failure (MTTF), profit function and cost benefits for all configurations have been obtained and validated by performing numerical experiments. Analysis of the effect of different system parameters on the function of profit and availability has been carried out. Analytical comparisons presented in terms of availability, mean time to failure, profit function and cost benefits have shown that configuration 3 is the optimal configuration. This is supported by numerical examples in contrast to some studies where the optimal configuration of the system is not uniform as it depends on some system parameters. Graphs and sensitivity analysis presented reveal the analytical results and accomplish that Configuration 3 is the optimal in terms of design, reliability physiognomies such as availability of the system, mean time to failure, profit and cost benefit. The study is beneficial to engineers, system designers, reliability personnel, maintenance managers, etc.

2021 ◽  
Author(s):  
Lavanya Vadamodala ◽  
Abdul Wahab Bandarkar ◽  
Shuvajit Das ◽  
Md Ehsanul Haque ◽  
Anik Chowdhury ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Ying Liu ◽  
Xiaozhong Li ◽  
Jianbin Li

The lifetimes of components in unrepairable systems are considered as random fuzzy variables since randomness and fuzziness are often merged with each other. Then we establish the fundamental mathematical models of random fuzzy unrepairable systems, including series systems, parallel systems, series-parallel systems, parallel-series systems, and cold standby systems with absolutely reliable conversion switches. Furthermore, the expressions of reliability and mean time to failure (MTTF) are given for the above five random fuzzy unrepairable systems, respectively. Finally, numerical examples are given to show the application in a lighting lamp system and a hi-fi system.


2021 ◽  
Vol 58 (2) ◽  
pp. 289-313
Author(s):  
Ruhul Ali Khan ◽  
Dhrubasish Bhattacharyya ◽  
Murari Mitra

AbstractThe performance and effectiveness of an age replacement policy can be assessed by its mean time to failure (MTTF) function. We develop shock model theory in different scenarios for classes of life distributions based on the MTTF function where the probabilities $\bar{P}_k$ of surviving the first k shocks are assumed to have discrete DMTTF, IMTTF and IDMTTF properties. The cumulative damage model of A-Hameed and Proschan [1] is studied in this context and analogous results are established. Weak convergence and moment convergence issues within the IDMTTF class of life distributions are explored. The preservation of the IDMTTF property under some basic reliability operations is also investigated. Finally we show that the intersection of IDMRL and IDMTTF classes contains the BFR family and establish results outlining the positions of various non-monotonic ageing classes in the hierarchy.


2011 ◽  
Vol 110-116 ◽  
pp. 2497-2503 ◽  
Author(s):  
Zdenek Vintr ◽  
Michal Vintr

Rolling bearings are usually considered to be non-repaired items the reliability of which is characterized by mean time to failure, or so called basic rating life. Reliability describes these parameters well in case the bearings are used in operation up to the very time the failure occurs, or during the time corresponding with basic rating life. In case of railway applications the bearings are often used in large groups and are preventively replaced after much shorter operating time as compared with their basic rating life. In the article there is a model which enables us to describe the bearings reliability in this specific case and to specify a number of failures which might be expected from a group of bearings during operating time, or to determine mean operating time between failures of bearings.


2018 ◽  
Author(s):  
Fahad Al Adi ◽  
Afrinaldi Zulhen ◽  
Masrisetyo Adi ◽  
Hassan Al Saadi ◽  
Miguel Marcano ◽  
...  

2008 ◽  
Vol 7 (4) ◽  
pp. 307-326
Author(s):  
Zimoch Izabela

Reliability Analysis of Water Distribution Subsystem This paper presents results of detailed reliability analysis of water distribution subsystem operation of Krakow city. Basis of the research was wide base of information of occurred failures during exploitation (1996-2006). These analysis included evaluation of basic factors such as: failure and renovation intensities, mean recovery time and mean time to failure, availability factor and probability of failure-free operation at any time. Moreover, it was performed wide analysis of failure capability of pipes as a function of its diameter and material. The paper consists also of research results of occurred piping failures reasons and consequences.


Author(s):  
Kien Do Hung

Objective: Evaluating the result of high-dose imatinib for metastatic gastrointestinal stromal tumours after failure standard-dose first line. Patients and method: Restrospective analysis of 46 patients with metastatic gastrointestinal stromal tumours after failure standard-dose imatinib treated with high-dose imatinib at K hospital from 1/2015 đến 10/2019. Results: Median age was 54.6±9.5, male was 58.7%. The common primary tumor was gastric tumor. The mean time to failure of imatinib standard-dose 400mg/day was 38.2±5.3 months. Liver lesions were the most common lesions progressed after imatinib standard-dose failure (71.7%), primary tumor progressed was 39.1%. There was no patient who had complete response with treatment, the proportion of partial response accounted for 21.7% and stable disease was 45.7%. The clinical benefit rate was 67.4%. The sex-female, primary gastric tumor, good ECOG performance status, neutrophils, hemoglobine and albumin before treatment were the significant prognostic factors affecting the treatment response, p <0.05. The mean time to failure was 22.5 ± 3.4 (months), (min: 2.0; max: 58.0), median was 11.0 months. Conclusion: Treatment of high-dose imatinib after failure standard-dose 400mg/day showed the efficacy and good tolerance in metastatic GISTs.


2020 ◽  
Vol 25 (3) ◽  
pp. 209-216
Author(s):  
Jeremy S. Wetzel ◽  
Alex D. Waldman ◽  
Pavlos Texakalidis ◽  
Bryan Buster ◽  
Sheila R. Eshraghi ◽  
...  

OBJECTIVEThe malfunction rates of and trends in various cerebrospinal fluid (CSF) shunt designs have been widely studied, but one area that has received little attention is the comparison of the peritoneal distal slit valve (DSV) shunt to other conventional valve (CV) type shunts. The literature that does exist comes from older case series that provide only indirect comparisons, and the conclusions are mixed. Here, the authors provide a direct comparison of the overall survival and failure trends of DSV shunts to those of other valve type shunts.METHODSThree hundred seventy-two new CSF shunts were placed in pediatric patients at the authors’ institution between January 2011 and December 2015. Only ventriculoperitoneal (VP) shunts were eligible for study inclusion. Ventriculoatrial, lumboperitoneal, cystoperitoneal, subdural-peritoneal, and spinal shunts were all excluded. Rates and patterns of shunt malfunction were compared, and survival curves were generated. Patterns of failure were categorized as proximal failure, distal failure, simultaneous proximal and distal (proximal+distal) failure, removal for infection, externalization for abdominal pseudocyst, and addition of a ventricular catheter for loculated hydrocephalus.RESULTSA total of 232 VP shunts were included in the final analysis, 115 DSV shunts and 117 CV shunts. There was no difference in the overall failure rate or time to failure between the two groups, and the follow-up period was statistically similar between the groups. The DSV group had a failure rate of 54% and a mean time to failure of 17.8 months. The CV group had a failure rate of 50% (p = 0.50) and a mean time to failure of 18.5 months (p = 0.56). The overall shunt survival curves for these two groups were similar; however, the location of failure was significantly different between the two groups. Shunts with DSVs had proportionately more distal failures than the CV group (34% vs 14%, respectively, p = 0.009). DSV shunts were also found to have proximal+distal catheter occlusions more frequently than CV shunts (23% vs 5%, respectively, p = 0.005). CV shunts were found to have significantly more proximal failures than the DSV shunts (53% vs 27%, p = 0.028). However, the only failure type that carried a statistically significant adjusted hazard ratio in a multivariate analysis was proximal+distal catheter obstruction (CV vs DSV shunt: HR 0.21, 95% CI 0.05–0.81).CONCLUSIONSThere appears to be a difference in the location of catheter obstruction leading to the malfunction of shunts with DSVs compared to shunts with CVs; however, overall shunt survival is similar between the two. These failure types are also affected by other factors such etiology of hydrocephalus and endoscope use. The implications of these findings are unclear, and this topic warrants further investigation.


Sign in / Sign up

Export Citation Format

Share Document