scholarly journals Vibrations of an Elastic Beam Subjected by Two Kinds of Moving Loads and Positioned on a Foundation having Fractional Order Viscoelastic Physical Properties

2021 ◽  
Author(s):  
Lionel Merveil Anague Tabejieu ◽  
Blaise Roméo Nana Nbendjo ◽  
Giovanni Filatrella

The present chapter investigates both the effects of moving loads and of stochastic wind on the steady-state vibration of a first mode Rayleigh elastic beam. The beam is assumed to lay on foundations (bearings) that are characterized by fractional-order viscoelastic material. The viscoelastic property of the foundation is modeled using the constitutive equation of Kelvin-Voigt type, which contain fractional derivatives of real order. Based to the stochastic averaging method, an analytical explanation on the effects of the viscoelastic physical properties and number of the bearings, additive and parametric wind turbulence on the beam oscillations is provided. In particular, it is found that as the number of bearings increase, the resonant amplitude of the beam decreases and shifts towards larger frequency values. The results also indicate that as the order of the fractional derivative increases, the amplitude response decreases. We are also demonstrated that a moderate increase of the additive and parametric wind turbulence contributes to decrease the chance for the beam to reach the resonance. The remarkable agreement between the analytical and numerical results is also presented in this chapter.

2016 ◽  
Vol 23 (1) ◽  
pp. 119-130 ◽  
Author(s):  
Yaping Zhao

An improved stochastic averaging method of the energy envelope is proposed, whose application sphere is extensive and whose implementation is convenient. An oscillating system with both nonlinear damping and stiffness is taken into account. Its averaged Fokker-Planck-Kolmogorov (FPK) equation in respect of the transition probability density function of the energy envelope is deduced by virtue of the method mentioned above. Under the initial and boundary conditions, the joint probability density function as to the displacement and velocity of the system is worked out in closed form after solving the averaged FPK equation by right of a technique based on the integral transformation. With the aid of the special functions, the transient solutions of the probabilistic characteristics of the system response are further derived analytically, including the probability density functions and the mean square values. A simple approach to generate the ideal white noise is drastically ameliorated in order to produce the stationary wide-band stochastic external excitation for the Monte Carlo simulating investigation of the nonlinear system. Both the theoretical solution and the numerical solution of the probabilistic properties of the system response are obtained, which are extremely coincident with each other. The numerical simulation and the theoretical computation all show that the time factor has a certain influence on the probability characteristics of the response. For example, the probabilistic distribution of the displacement tends to be scattered and the mean square displacement trends toward its steady-state value as time goes by. Of course the transient process to reach the steady-state value will obviously be shorter if the damping of the system is greater.


2000 ◽  
Vol 122 (3) ◽  
pp. 281-289 ◽  
Author(s):  
G. Visweswara Rao

The dynamic response of an Euler-Bernoulli beam under moving loads is studied by mode superposition. The inertial effects of the moving load are included in the analysis. The time-dependent equations of motion in modal space are solved by the method of multiple scales. Instability regions of parametric resonance are identified and the moving mass effect is shown to significantly affect the transient response of the beam. Importance of modal interaction arising out of the possible internal resonance is highlighted. While the external resonance is due to the gravity effects of the moving load, the parametric and internal resonance solely depends on the load mass parameter—ratio of the moving load mass to the beam mass. Numerical results show the influence of the load inertia terms on the beam response under either a single moving load or a series of moving loads. [S0739-3717(00)01703-7]


2018 ◽  
Vol 28 (10) ◽  
pp. 1850127 ◽  
Author(s):  
Lijuan Ning ◽  
Zhidan Ma

We consider bifurcation regulations under the effects of correlated noise and delay self-control feedback excitation in a birhythmic model. Firstly, the term of delay self-control feedback is transferred into state variables without delay by harmonic approximation. Secondly, FPK equation and stationary probability density function (SPDF) for amplitude can be theoretically mapped with stochastic averaging method. Thirdly, the intriguing effects on bifurcation regulations in a birhythmic model induced by delay and correlated noise are observed, which suggest the violent dependence of bifurcation in this model on delay and correlated noise. Particularly, the inner limit cycle (LC) is always standing due to noise. Lastly, the validity of analytical results was confirmed by Monte Carlo simulation for the dynamics.


Author(s):  
Jiaojiao Sun ◽  
Zuguang Ying ◽  
Ronghua Huan ◽  
Weiqiu Zhu

A closed-loop controlled system usually consists of the main structure, sensors, and actuators. In this paper, asymptotic stability of trivial solutions of a controlled nonlinear stochastic system considering the dynamics of sensors and actuators is investigated. Considering the inherent and intentional nonlinearities and random loadings, the coupled dynamic equations of the controlled system with sensors and actuators are given, which are further formulated by a controlled, randomly excited, dissipated Hamiltonian system. The Hamiltonian of the controlled system is introduced, and, based on the stochastic averaging method, the original high-dimensional system is reduced to a one-dimensional averaged system. The analytical expression of Lyapunov exponent of the averaged system is derived, which gives the approximately necessary and sufficient condition of the asymptotic stability of trivial solutions of the original high-dimensional system. The validation of the proposed method is demonstrated by a four-degree-of-freedom controlled system under pure stochastically parametric excitations in detail. A comparative analysis, which is related to the stochastic asymptotic stability of the system with and without considering the dynamics of sensors and actuators, is carried out to investigate the effect of their dynamics on the motion of the controlled system. Results show that ignoring the dynamics of sensors and actuators will get a shrink stable region of the controlled system.


2012 ◽  
Vol 22 (04) ◽  
pp. 1250083 ◽  
Author(s):  
F. HU ◽  
W. Q. ZHU ◽  
L. C. CHEN

The stochastic Hopf bifurcation of multi-degree-of-freedom (MDOF) quasi-integrable Hamiltonian systems with fractional derivative damping is investigated. First, the averaged Itô stochastic differential equations for n motion integrals are obtained by using the stochastic averaging method for quasi-integrable Hamiltonian systems. Then, an expression for the average bifurcation parameter of the averaged system is obtained and a criterion for determining the stochastic Hopf bifurcation of the system by using the average bifurcation parameter is proposed. An example is given to illustrate the proposed procedure in detail and the numerical results show the effect of fractional derivative order on the stochastic Hopf bifurcation.


2017 ◽  
Vol 27 (13) ◽  
pp. 1750202 ◽  
Author(s):  
Zhidan Ma ◽  
Lijuan Ning

We aim to investigate bifurcation behaviors in a stochastic birhythmic van der Pol (BVDP) system subjected to delay self-control feedback. First, the harmonic approximation is adopted to drive the delay self-control feedback to state variables without delay. Then, Fokker–Planck–Kolmogorov (FPK) equation and stationary probability density function (SPDF) for amplitude are obtained by applying stochastic averaging method. Finally, dynamical scenarios of the change of delay self-control feedback as well as noise that markedly influence bifurcation performance are observed. It is found that: the big feedback strength and delay will suppress the large amplitude limit cycle (LC) while the relatively big noise strength facilitates the large amplitude LC, which imply the proposed regulation strategies are feasible. Interestingly enough, the inner LC is never destroyed due to noise. Furthermore, the validity of analytical results was verified by Monte Carlo simulation of the dynamics.


2018 ◽  
Vol 28 (14) ◽  
pp. 1850170 ◽  
Author(s):  
Yong-Ge Yang ◽  
Wei Xu ◽  
YangQuan Chen ◽  
Bingchang Zhou

To the best of authors’ knowledge, little work has been focused on the noisy vibro-impact systems with fractional derivative element. In this paper, stochastic bifurcation of a vibro-impact oscillator with fractional derivative element and a viscoelastic term under Gaussian white noise excitation is investigated. First, the viscoelastic force is approximately replaced by damping force and stiffness force. Thus the original oscillator is converted to an equivalent oscillator without a viscoelastic term. Second, the nonsmooth transformation is introduced to remove the discontinuity of the vibro-impact oscillator. Third, the stochastic averaging method is utilized to obtain analytical solutions of which the effectiveness can be verified by numerical solutions. We also find that the viscoelastic parameters, fractional coefficient and fractional derivative order can induce stochastic bifurcation.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
R. C. Hu ◽  
Q. F. Lü ◽  
X. F. Wang ◽  
Z. G. Ying ◽  
R. H. Huan

A probability-weighted optimal control strategy for nonlinear stochastic vibrating systems with random time delay is proposed. First, by modeling the random delay as a finite state Markov process, the optimal control problem is converted into the one of Markov jump systems with finite mode. Then, upon limiting averaging principle, the optimal control force is approximately expressed as probability-weighted summation of the control force associated with different modes of the system. Then, by using the stochastic averaging method and the dynamical programming principle, the control force for each mode can be readily obtained. To illustrate the effectiveness of the proposed control, the stochastic optimal control of a two degree-of-freedom nonlinear stochastic system with random time delay is worked out as an example.


Sign in / Sign up

Export Citation Format

Share Document