scholarly journals Molecular Imaging with Genetically Programmed Nanoparticles

2021 ◽  
Author(s):  
Donna E. Goldhawk

Nanoparticle research has greatly benefitted medical imaging platforms by generating new signals, enhancing detection sensitivity, and expanding both clinical and preclinical applications. For magnetic resonance imaging, the fabrication of superparamagnetic iron oxide nanoparticles has provided a means of detecting cells and has paved the way for magnetic particle imaging. As the field of molecular imaging grows and enables the tracking of cells and their molecular activities so does the possibility of tracking genetically programmed biomarkers. This chapter discusses the advantages and challenges of gene-based contrast, using the bacterial magnetosome model to highlight the requirements of in vivo iron biomineralization and reporter gene expression for magnetic resonance signal detection. New information about magnetosome protein interactions in non-magnetic mammalian cells is considered in the light of design and application(s) of a rudimentary magnetosome-like nanoparticle for molecular imaging. Central to this is the hypothesis that a magnetosome root structure is defined by essential magnetosome genes, whose expression positions the biomineral in a given membrane compartment, in any cell type. The use of synthetic biology for programming multi-component structures not only broadens the scope of reporter gene expression for molecular MRI but also facilitates the tracking of cell therapies.

2002 ◽  
Vol 22 (10) ◽  
pp. 1157-1164 ◽  
Author(s):  
Ronald Blasberg

Noninvasive in vivo molecular imaging has developed over the past decade and involves nuclear (positron emission tomography [PET], gamma camera), magnetic resonance, and in vivo optical imaging systems. Most current in vivo molecular imaging strategies are “indirect” and involve the coupling of a “reporter gene” with a complementary “reporter probe.” Imaging the level of probe accumulation provides indirect information related to the level of reporter gene expression. Reporter gene constructs are driven by upstream promoter/enhancer elements; reporter gene expression can be constitutive, leading to continuous transcription and used to identify the site of transduction and to monitor the level and duration of gene (vector) activity. Alternatively, reporter gene expression can be inducible, leading to controlled gene expression, or reporter genes can function as a “sensor” to monitor the level of endogenous promoters and transcription factors. The development of versatile and sensitive assays that do not require tissue sampling will be of considerable value for monitoring molecular-genetic and cellular processes in animal models of human disease, as well as for studies in human subjects in the future. Noninvasive imaging of molecular-genetic and cellular processes will complement established ex vivo molecular-biologic assays that require tissue sampling, and will provide a spatial as well as a temporal dimension to our understanding of various diseases. Several examples of imaging endogenous biologic processes in animals using reporter constructs, radiolabeled probes, and PET imaging are reviewed (e.g., p53-dependent gene expression, T-cell receptor-dependent activation of T-lymphocytes, and preliminary studies of endogenous HIF-1α expression). Issues related to the translation of noninvasive molecular imaging technology into the clinic are also discussed.


2002 ◽  
Vol 25 (8) ◽  
pp. 1115-1118 ◽  
Author(s):  
Kiyoshi Tanigawa ◽  
Katsunao Tanaka ◽  
Hidetaka Nagase ◽  
Hidekazu Miyake ◽  
Mamoru Kiniwa ◽  
...  

2018 ◽  
Vol 23 (2) ◽  
pp. 208-217 ◽  
Author(s):  
Lina Alon ◽  
Dara L. Kraitchman ◽  
Michael Schär ◽  
Angel Cortez ◽  
Nirbhay N. Yadav ◽  
...  

1996 ◽  
Vol 23 (1) ◽  
pp. 75 ◽  
Author(s):  
SR Mudge ◽  
WR Lewis-Henderson ◽  
RG Birch

Luciferase genes from Vibrio harveyi (luxAB) and firefly (luc) were introduced into E. coli, Agrobacteriurn, Arabidopsis and tobacco. Transformed bacteria and plants were quantitatively assayed for luciferase activity using a range of in vitro and in vivo assay conditions. Both lux and luc proved efficient reporter genes in bacteria, although it is important to be aware that the sensitive assays may detect expression due to readthrough from distant promoters. LUX activity was undetectable by liquid nitrogen-cooled CCD camera assays on intact tissues of plants which showed strong luxAB expression by in vitro assays. The decanal substrate for the lux assay was toxic to many plant tissues, and caused chemiluminescence in untransformed Arabidopsis leaves. These are serious limitations to application of the lux system for sensitive, non-toxic assays of reporter gene expression in plants. In contrast, LUC activity was readily detectable in intact tissues of all plants with luc expression detectable by luminometer assays on cell extracts. Image intensities of luc-expressing leaves were commonly two to four orders of magnitude above controls under the CCD camera. Provided adequate penetration of the substrate luciferin is obtained, luc is suitable for applications requiring sensitive, non-toxic assays of reporter gene expression in plants.


BioTechniques ◽  
2007 ◽  
Vol 42 (2) ◽  
pp. 209-215 ◽  
Author(s):  
Sewon Ki ◽  
Fuminori Sugihara ◽  
Koji Kasahara ◽  
Hidehito Tochio ◽  
Masahiro Shirakawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document