scholarly journals Functioning Fuzzy Logic in Optimizing the Solar Systems Work

2022 ◽  
Author(s):  
Daoud Raid ◽  
Ahmed Omer ◽  
Al-khashab Yaareb

Fuzzy logic has been used in many fields, either to control a specific movement, improve the productivity of a machine, or monitor the work of an electrical or mechanical system or the like. In this chapter, we will discuss what are the basic factors that must be taken to use the fuzzy logic in the aforementioned matters in general, and then focus on its employment in the field of renewable energy. Three main axes for renewable energy are solar panels, a wind turbine and finally, solar collectors. The key to working and the basis of the static system is the mechanism for selecting the inputs that directly affect the output in addition to the methods and activation functions of the fuzzy logic.

2013 ◽  
Vol 385-386 ◽  
pp. 1122-1126
Author(s):  
Yue Hua Huang ◽  
Qian Cheng Li ◽  
Chen Chen ◽  
Na Peng ◽  
Zuo Dong Duan ◽  
...  

Due to the lack of fossil fuels, people are paying more and more attention to renewable energy. Wind energy is one of the important renewable energy. Unpredictability and volatility of the wind source make the output power unstable, so we need to control the active Power. This paper uses fuzzy control method, and the simulation results show that fuzzy control method mentioned in this paper is better than the conventional PI control for Wind power, the nonlinear system. Based on the analysis of pitch control theory and control process, we design fuzzy pitch controller and its model. We simulates gust wind speed imitates, wind turbine control and verifies the effects of the blur pitch control in a constant speed and constant frequency wind power generation system. According to the results of the simulation, we know the pitch controller of fuzzy logic has a better effect on the active control of the generator of the wind power generation system.


Author(s):  
Adarsh. C. Anand and Dr. J. Vijaya Kumar

In today’s world scenario electrical energy is playing a crucial and important role in development of any nation. Large and Enormous consumption of non-renewable resources which made them scarce in quantity and increase in cost due to which it has created demand for renewable energy resources. Due to the current requirements for the expansion of renewable energy as sources of electrical energy, wind energy conversion is getting much interest all over the world. The regular traditional wind turbines have fixed turning speeds, while DFIG enables wind turbine to operate in various speeds. In this paper using MATLAB/SIMULINK we study the performance of DFIG using different conventional intelligent controllers. In this paper we use P, PI, PID PI+FUZZY Logic and PID+FUZZY Logic controllers to study the DFIG. The result demonstrates the effectiveness of controllers in boosting the system performance.


Author(s):  
Kishor Sontakke ◽  
Samir Deshmukh ◽  
Sandip Patil

The growing demand for electrical energy for industrial and domestic use, coupled with the limited amount of available fossil fuel reserves and its negative effects on the environment, have made it necessary to seek alternative and renewable energy sources. The use of renewable energy is promoted worldwide to be less dependent on conventional fuels and nuclear energy. Therefore research in the field is motivated to increase efficiency of renewable energy systems. This study aimed to study potential of micro wind turbine and velocity profile through shroud for low wind speeds. Although there is a greater inclination to use solar panels because of the local weather conditions, there are some practical implications that have place the use of solar panels in certain areas to an end. The biggest problem is panel stealing. Also, in some parts of the country the weather is more appropriate to apply wind turbines. Thus, this study paying attention on the design of a new concept to improve wind turbines to be appropriate for the low wind speeds in India. The concept involves the implementation of a concentrator and diffuser to a wind turbine, to increase the power coefficient. Although the wind turbine was not tested for starting speeds, the realization of the shroud should contribute to improved starting of the wind turbine at lower wind speeds. The configuration were not manufactured, but simulated with the use of a program to obtain the power production of the wind turbine over a range of wind speeds. These values were compared to measured results of an open wind turbine developed. The most important topic at hand when dealing with a shrouded wind turbine is to find out if the overall diameter or the blade diameter of the turbine should be the point of reference. As the wind turbine is situated in a shroud that has a larger diameter than the turbine blades, some researchers believe that the overall diameter should be used to calculate the efficiency. The benefits of shrouded wind turbines are discussed.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4941
Author(s):  
Miguel Á. Rodríguez-López ◽  
Emilio Cerdá ◽  
Pablo del Rio

Global warming represents a serious challenge, which requires the adoption of renewable energy technologies worldwide. However, it can negatively affect the availability of renewable energy resources, such as wind, which are needed for electricity generation. In this context, there is an increasing need for more accurate evaluations of wind turbine power curves. A novel methodology to model the power curves of wind turbines, which combines the use of artificial neural networks (ANN) and Fuzzy logic rules, is proposed in this paper. This methodology assesses the role of environmental temperature in the power curve and the impact of temperature increases on wind energy production. The application of this methodology is illustrated with the simulation of the impact of global warming on the electricity generation of a wind farm. Due to the non-linear relationship between the power output of a turbine and its primary and derived parameters, it is shown that ANN combined with an expert system formed by a Fuzzy logic module fit power curve modeling processes well. The application of the methodology shows that an increase in temperatures would trigger a small reduction in the performance of wind turbines.


2020 ◽  
Vol 16 (2) ◽  
pp. 126-130
Author(s):  
Mahdi Mozaffarilegha ◽  
Sanaz Rashidifard ◽  
Mohammad Mozaffarilegha

The growth in energy consumption and the lack of access to the electricity network in remote areas, rising fossil fuel prices, the importance of using renewable energy in these areas is increasing. The integration of these resources to provide local loads has introduced a concept called microgrid. Optimal utilization of renewable energy systems is one of their most important issues. Due to the high price of equipment such as wind turbine, solar panels and batteries, capacity sizing of the equipment is vital. In this paper, presents an algorithm based on techno-economic for assessment optimum design of a renewable energy system including photovoltaic system, batteries and wind turbine is presented.


2021 ◽  
Vol 2 (2) ◽  
pp. 3318-3331
Author(s):  
Diego Armando Mejía ◽  
Ivaldo Torres Chávez ◽  
Abelardo Mejía

In this project a fuzzy control system is developed to follow the sun with its respective dynamics.  The positioning of the panel must take into account changes in the weather, the disturbances that may occur, the area in which the tracker is located and so on.  To do this, the maximum capture point positioning control system is studied using fuzzy logic.  Prior to design and implementation, corresponding design criteria were established in instrumentation, mechanical structure, control, communication, and processing for prototype development.  By means of the above, the photovoltaic array positioning system is designed, to then carry out the efficient implementation thanks to the calculations and adjustments made.  After having the physical structure, we start to develop the positioning control of quadruple arrangements of solar panels with two degrees of freedom per maximum point of capture of solar radiation using fuzzy control, taking into account that the radiation sensors give a reference point. for the setpoint in the control loop and after this, control signals are sent to the selected actuators.  Finally, the control system is validated for the positioning of the tracker with the fuzzy control loop implemented; In addition, the system is compared with the strategy implemented before a static system in order to analyze its efficiency.  In order for the solar tracking system to show greater efficiency compared to the static system, radiation sensors are implemented that compensate for the influence of climatic disturbances that any solar panel tends to suffer.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5167
Author(s):  
Jordi Cusidó ◽  
Arnau López ◽  
Mattia Beretta

Wind energy is a form of renewable energy with the highest installed capacity. However, it is necessary to reduce the operation and maintenance costs and extend the lifetime of wind turbines to make wind energy more competitive. This paper presents a power-derating-based Fault-Tolerant Control (FTC) model in 2 MW three-bladed wind turbines implemented using the National Renewable Energy Laboratory’s (NREL) Fatigue, Aerodynamics, Structures, and Turbulence (FAST) wind turbine simulator. This control strategy is potentially supported by the health status of the gearbox, which was predicted by means of algorithms and quantified in an indicator denominated as a merge developed by SMARTIVE, a pioneering of in this idea. Fuzzy logic was employed in order to decide whether to down-regulate the output power or not, and to which level to adjust to the needs of the turbines. Simulation results demonstrated that a reduction in the power output resulted in a safer operation, since the stresses withstood by the blades and tower significantly decreased. Moreover, the results supported empirically that a diminution in the generator torque and speed was acheived, resulting in a drop in the gearbox bearing and oil temperatures. By implementing this power-derating FTC, the downtime due to failure stops could be controlled, and thus the power production noticeably grew. It has been estimated that more than 325,000 tons of CO2 could be avoided yearly if implemented globally.


Sign in / Sign up

Export Citation Format

Share Document