scholarly journals xIoT-Based Converged 5G and ICT Infrastructure

2021 ◽  
Author(s):  
Ahmed Y. Hassebo

This chapter examines and explores the potential of how the capabilities of the emerging 5G cellular technologies can be integrated with a given mission-critical xIoT application (e., g., smart grid) to enable a truly converged xIoT-ICT infrastructure that would further enhance and enable the adequate support of the strict performance requirement of such an xIoT application. Since the smart grid believed to be one of the most necessitated IoT services. in this work, it has been nominated as a descriptive xIoT case. As the smart grid comprises an extensive collection of applications extended from mission-critical services which have rigorous necessities in terms of end-to-end (E2E) latency and reliability (e.g., real-time system protection and control utilizing PMU measurements) to those that require support of massive number of connected machine-to-machine (M2M) devices with relaxed latency and reliability requirements (e.g., smart meters). Based on time-to-market strategy, we identify and propose two different 5G-based business and architectural models that enable a truly converged power grid-ICT infrastructure, namely, near-term model and long-term model.

2018 ◽  
Vol 31 (10) ◽  
pp. e3557 ◽  
Author(s):  
Renato William R. de Souza ◽  
Leonardo R. Moreira ◽  
Joel J. P. C. Rodrigues ◽  
Rafael R. Moreira ◽  
Victor Hugo C. de Albuquerque

2021 ◽  
Vol 34 (1) ◽  
pp. 106881
Author(s):  
Hanyu Yang ◽  
Xubin Liu ◽  
Di Zhang ◽  
Tao Chen ◽  
Canbing Li ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Lincoln Kamau Kiarie ◽  
Philip Kibet Langat ◽  
Christopher Maina Muriithi

The ongoing upgrade of the electrical power system into a more powerful system known as Smart Grid has both benefits and costs. Smart Grid relies on advanced communication and hence offers better services through improved monitoring, planning, and control. However, enhanced communications make Smart Grid more susceptible to privacy leaks and cyber attacks. Small meters collect detailed consumer data, such as power consumption, which can then become a major source of privacy leakage. Encryption can help protect consumer data, but great care is needed. The popular RC4 (Rivest Cipher 4) encryption has been implemented in the widely deployed smart meter standard—Open Smart Grid Protocol (OSGP)—but has been shown to have major weaknesses. This paper proposes the use of Spritz encryption. Spritz is an RC4-like algorithm designed to repair weak design decisions in RC4 to improve security. A test on performing one encryption took only 0.85 milliseconds, showing that it is fast enough not to affect the operations of a smart meter. Its ability to withstand brute force attacks on small keys is also significantly greater than RC4’s ability.


2013 ◽  
Vol 446-447 ◽  
pp. 837-841
Author(s):  
Hashmi Murtaza ◽  
Alanen Raili ◽  
Hänninen Seppo

In this paper, a new simulation model is developed to be able to simulate diesel genset smart grid interconnection by keeping in view future requirements of the grids and grid codes. The simulations are carried out in Matlab/Simulink environment. An example case is based on 1200 kW variable speed diesel genset with permanent magnet synchronous generator (PMSG). The simulations are carried out for various dynamic behaviours of PMSG and their protection and control facilities, which are necessary in normal operating conditions and in a range of disturbed operating conditions in order to preserve or to re-establish system security. Various faults (e.g. disturbances) have been induced in the distribution system and the robustness of the network has been analysed to make sure continuous supply of electricity to the consumers in the future smart grid environment.


Sign in / Sign up

Export Citation Format

Share Document