scholarly journals Parasitic Plants in Agriculture and Management

2021 ◽  
Author(s):  
Pervin Erdogan

Parasitic plants are among the most problematic pests of agricultural crops worldwide. They are found worldwide in all plant communities except aquatic. Parasitic plants are the organisms that settle in the host plant by means of the special organs they have developed and penetrate the vascular tissues of the hosts and meet their nutritional, water and mineral needs from the host plant. This particular body they have is called a haustorium. The discovery and investigation of the haustorium structures led to the evaluation of many heterotrophic plant species previously defined as parasitic plants in different groups. Host organisms are very important in completing the life cycle of parasitic plants. In general, the parasite weakens the host, so it produces fewer flowers and viable seeds or the value of the timber is reduced. However, some parasites, mostly annual root parasites belonging to the Orobanchaceae, can kill the host and cause significant economic damage while attacking monocultures in agriculture, and much effort is put into controlling these harmful parasites. Parasitic weeds are difficult to control because there are few resources for crop resistance and it is difficult to apply sufficiently selective control methods to kill weeds without physically and biochemically damaging the crop to which they are attached.

Nematology ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 257-267
Author(s):  
Jan H. Schmidt ◽  
Judith N. Seeger ◽  
Katharina von Grafenstein ◽  
Jenny Wintzer ◽  
Maria R. Finckh ◽  
...  

Summary The plant-parasitic nematode, Paratylenchus bukowinensis, occurs ubiquitously in arable fields. Economic damage has been reported from, among others, cabbage, parsley, and celery, but other crops might be affected as well. Management of P. bukowinensis is difficult. Resistant cultivars are not available and chemical control is prohibited in most European countries. In addition, sustainable management is often hindered by a lack of information regarding the biology and host range of P. bukowinensis. To improve the management of P. bukowinensis in the future, a good understanding of the life cycle and host plant-nematode interactions is required. We investigated the host range, life cycle and natural decline of P. bukowinensis in five glasshouse experiments. A total of 26 plant genotypes comprising 22 plant species from eight plant families were studied. Plant species within the families Brassicaceae and Apiaceae were confirmed as good hosts, while plant species within the families Fabaceae, Asteraceae, Amaryllidaceae, Solanaceae, Amaranthaceae and Poaceae can be considered non-hosts or poor hosts. In roots of good hosts, P. bukowinensis completed its life cycle within 3-4 weeks. In the absence of a host plant, P. bukowinensis declined by 40% within the first 4 weeks, but then remained at this level until the experiment was terminated after 14 weeks. Overall, the host range of P. bukowinensis seems to be smaller than for other species within the genus Paratylenchus, such as P. projectus or P. similis. Control of P. bukowinensis using crop rotation should be feasible by rotating good hosts belonging to the families Brassicaceae and Apiaceae with non-hosts or poor hosts.


2021 ◽  
Vol 147 (3) ◽  
pp. 04020181
Author(s):  
Alena J. Raymond ◽  
Alissa Kendall ◽  
Jason T. DeJong ◽  
Edward Kavazanjian ◽  
Miriam A. Woolley ◽  
...  

Author(s):  
Marcin W. Zielonka ◽  
Tom W. Pope ◽  
Simon R. Leather

Abstract The carnation tortrix moth, Cacoecimorpha pronubana (Hübner, [1799]) (Lepidoptera: Tortricidae), is one of the most economically important insect species affecting the horticultural industry in the UK. The larvae consume foliage, flowers or fruits, and/or rolls leaves together with silken threads, negatively affecting the growth and/or aesthetics of the crop. In order to understand the polyphagous behaviour of this species within an ornamental crop habitat, we hypothesized that different host plant species affect its life history traits differently. This study investigated the effects of the host plant species on larval and pupal durations and sizes, and fecundity (the number of eggs and the number and size of egg clutches). At 20°C, 60% RH and a 16L:8D photoperiod larvae developed 10, 14, 20 and 36 days faster when reared on Christmas berry, Photinia (Rosaceae), than on cherry laurel, Prunus laurocerasus (Rosaceae), New Zealand broadleaf, Griselinia littoralis (Griseliniaceae), Mexican orange, Choisya ternata (Rutaceae), and firethorn, Pyracantha angustifolia (Rosaceae), respectively. Female pupae were 23.8 mg heavier than male pupae, and pupal weight was significantly correlated with the duration of larval development. The lowest and the highest mean numbers of eggs were produced by females reared on Pyracantha (41) and Photinia (202), respectively. Clutch size differed significantly among moths reared on different host plants, although the total number of eggs did not differ. This study showed that different ornamental host plants affect the development of C. pronubana differently. Improved understanding of the influence of host plant on the moth's life history parameters measured here will help in determining the economic impact that this species may have within the ornamental plant production environment, and may be used in developing more accurate crop protection methodologies within integrated pest management of this insect.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 741
Author(s):  
Rocío Fernández-Zamudio ◽  
Pablo García-Murillo ◽  
Carmen Díaz-Paniagua

In temporary ponds, seed germination largely determines how well aquatic plant assemblages recover after dry periods. Some aquatic plants have terrestrial morphotypes that can produce seeds even in dry years. Here, we performed an experiment to compare germination patterns for seeds produced by aquatic and terrestrial morphotypes of Ranunculus peltatus subsp. saniculifolius over the course of five inundation events. During the first inundation event, percent germination was higher for terrestrial morphotype seeds (36.1%) than for aquatic morphotype seeds (6.1%). Seed germination peaked for both groups during the second inundation event (terrestrial morphotype: 47%; aquatic morphotype: 34%). Even after all five events, some viable seeds had not yet germinated (terrestrial morphotype: 0.6%; aquatic morphotype: 5%). We also compared germination patterns for the two morphotypes in Callitriche brutia: the percent germination was higher for terrestrial morphotype seeds (79.5%) than for aquatic morphotype seeds (41.9%). Both aquatic plant species use two complementary strategies to ensure population persistence despite the unpredictable conditions of temporary ponds. First, plants can produce seeds with different dormancy periods that germinate during different inundation periods. Second, plants can produce terrestrial morphotypes, which generate more seeds during dry periods, allowing for re-establishment when conditions are once again favorable.


2020 ◽  
Vol 168 (12) ◽  
pp. 900-910
Author(s):  
Eduardo G. Virla ◽  
María B. Aguirre ◽  
Guido A. Van Nieuwenhove ◽  
Erica B. Luft Albarracin ◽  
Guillermo A. Logarzo

2008 ◽  
Vol 140 (2) ◽  
pp. 192-202 ◽  
Author(s):  
Gaylord A. Desurmont ◽  
Paul A. Weston

AbstractExperiments were conducted under laboratory conditions to determine the influence of the relative sizes of predator and prey, temperature, presence of refugia, size of the search area, and host-plant species on the predation performance of Podisus maculiventris (Say) nymphs against viburnum leaf beetle, Pyrrhalta viburni (Paykull), a new landscape pest in North America that feeds on the foliage of species of Viburnum L. (Caprifoliaceae). Predator handling time was positively correlated with body mass of the prey for all instars of P. maculiventris, but the rate of increase of handling time relative to prey mass decreased as predator age increased. Temperature was positively correlated with predation rates, but the presence of refugia did not have an impact on predation. The influence of host-plant species and size of the search area was tested on southern arrowwood (Viburnum dentatum L.) and American cranberrybush (Viburnum opulus L. var. americanum Aiton). There was a significant interaction between plant species and size of the search area, the species effect becoming significant as leaf surface area increased. In the case of southern arrowwood a negative correlation between size of the search area and predation rate was also detected. The identification of these factors adds valuable knowledge for using P. maculiventris as a biological-control agent against P. viburni.


Author(s):  
Frank Berendse ◽  
Rob H. E. M. Geerts ◽  
Wim Th. Elberse ◽  
Thiemo Martijn Bezemer ◽  
Paul W. Goedhart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document