scholarly journals Nematodes as Biological Indicators of Soil Quality in the Agroecosystems

2021 ◽  
Author(s):  
Tabassum Ara Khanum ◽  
Nasir Mehmood ◽  
Nasira Khatoon

Soil nematodes have advantages as bio-indicators, because they have beneficial role in the food web. Nematodes associated with bacteria are probably the most studied biological indicators of soil fertility. Saprophytic nematodes act as bio-indicators of soil health because they have different beneficial ways to increase in soil functions such as in management of ecosystem; enhancement of nitrogen in soil by ingestion of nitrogen and secrete extra nitrogen as NH4, that is easily absorbable; putrefaction and by dispersion of bacteria and fungi to recently available organic residues. Therefore, nematode are beneficial in increasing soil health or plant growth by providing the nutrient through associated bacteria. So it can be evaluated that the nematodes use as biological indicators of soil fertility because of remarkable diversity and nematode contribution in many functions of the soil fertility.

SOIL ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Antonello Bonfante ◽  
Fabio Terribile ◽  
Johan Bouma

Abstract. This study focuses on soil physical aspects of soil quality and health with the objective to define procedures with worldwide rather than only regional applicability, reflecting modern developments in soil physical and agronomic research and addressing important questions regarding possible effects of soil degradation and climate change. In contrast to water and air, soils cannot, even after much research, be characterized by a universally accepted quality definition and this hampers the internal and external communication process. Soil quality expresses the capacity of the soil to function. Biomass production is a primary function, next to filtering and organic matter accumulation, and can be modeled with soil–water–atmosphere–plant (SWAP) simulation models, as used in the agronomic yield-gap program that defines potential yields (Yp) for any location on earth determined by radiation, temperature and standardized crop characteristics, assuming adequate water and nutrient supply and lack of pests and diseases. The water-limited yield (Yw) reflects, in addition, the often limited water availability at a particular location. Actual yields (Ya) can be considered in relation to Yw to indicate yield gaps, to be expressed in terms of the indicator (Ya/Yw)×100. Soil data to calculate Yw for a given soil type (the genoform) should consist of a range of soil properties as a function of past management (various phenoforms) rather than as a single representative dataset. This way a Yw-based characteristic soil quality range for every soil type is defined, based on semipermanent soil properties. In this study effects of subsoil compaction, overland flow following surface compaction and erosion were simulated for six soil series in the Destra Sele area in Italy, including effects of climate change. Recent proposals consider soil health, which appeals more to people than soil quality and is now defined by separate soil physical, chemical and biological indicators. Focusing on the soil function biomass production, physical soil health at a given time of a given type of soil can be expressed as a point (defined by a measured Ya) on the defined soil quality range for that particular type of soil, thereby defining the seriousness of the problem and the scope for improvement. The six soils showed different behavior following the three types of land degradation and projected climate change up to the year 2100. Effects are expected to be major as reductions of biomass production of up to 50 % appear likely under the scenarios. Rather than consider soil physical, chemical and biological indicators separately, as proposed now elsewhere for soil health, a sequential procedure is discussed, logically linking the separate procedures.


2020 ◽  
Vol 7 (3) ◽  
pp. 275
Author(s):  
Qiaofang LU ◽  
Tongtong LIU ◽  
Nanqi WANG ◽  
Zhechao DOU ◽  
Kunguang WANG ◽  
...  

2018 ◽  
Author(s):  
Antonello Bonfante ◽  
Fabio Terribile ◽  
Johan Bouma

Abstract. This study is restriced to soil physical aspects of soil quality and – health with the objective to define procedures with worldwide rather than only regional applicability, reflecting modern developments in soil physical research and focusing on important questions regarding possible effects of soil degradation and climate change. In contrast to water and air, soils cannot, even after much research, be characterized by a universally accepted quality definition and this hampers the internal and external communication process. Soil quality expresses the capacity of the soil to function. Biomass production is a primary function, next to filtering and organic matter accumulation, and can be modeled with soil-water-plant-atmosphere simulation models, as used in the agronomic yield-gap program that defines potential yields (Yp) for any location on earth determined by radiation, temperature and standardized crop characteristics, assuming adequate water and nutrient supply and lack of pests and diseases. The water-limited yield (Yw) reflects, in addition, the often limited water availability at a particular location. Real yields (Ya) can be considered in relation to Yw to indicate yield gaps, to be expressed in terms of the indicator: (Ya/Yw) × 100. Soil data to calculate Yw for a given soil type (the genoform) should consist of a range of soil properties as a function of past management (various phenoforms) rather than as a single representative dataset. This way a Yw-based soil-characteristic soil quality range is defined, based on semi-permanent soil properties. In this study effects of subsoil compaction, overland flow following surface compaction and erosion were simulated for six soil series in the Destre Sele area in Italy, including effects of climate change. Recent proposals consider soil health, which appeals more to people than soil quality and is now defined by seperate soil physical, -chemical and – biological indicators. Focusing on the soil function biomass production, physical soil health at a given time of a given type of soil can be expressed as a point (defined by a measured Ya) on the defined soil quality range for that particular type of soil, thereby defining the seriousness of the problem and the scope for improvement. The six soils showed different behavior following the three types of land degradation and projected climate change up to the year 2100. Effects are expected to be major as reductions of biomass production of up to 50 % appear likely. Rather than consider soil physical, chemical and biological indicators seperately, as proposed now for soil health, a sequential procedure is suggested logically linking the seperate procedures.


2012 ◽  
Vol 49 (3) ◽  
pp. 416-434 ◽  
Author(s):  
RADHA PRASANNA ◽  
SANTOSH BABU ◽  
ANUJ RANA ◽  
SOUMYA RANJAN KABI ◽  
VIDHI CHAUDHARY ◽  
...  

SUMMARYCyanobacteria represent promising organic inputs in rice–wheat cropping system, as they contribute towards accretion of N and C, besides secreting growth-promoting substances which influence plant productivity and soil fertility. The present study focused towards using a combinatorial approach for evaluating field-level colonization of cyanobacteria in soil and their effect on soil microbiological and plant parameters, employing agronomic and molecular tools. A consortium of cyanobacterial strains (BF1,Anabaenasp., BF2,Nostocsp., BF3,Nostocsp. and BF4,Anabaenasp.) was employed in different three-and four-member combinations along with 75% N + Full dose of P and K fertilizers. A significant enhancement in microbial activity and plant growth/yields and savings of 25% N in the wheat–rice cropping sequence were recorded, especially in treatments involving 75% N + Full dose of PK+BF1+BF2+BF4 and T5, i.e. 75% N + Full dose of PK+BF1+BF2+BF3. Such treatments were significantly higher or statistically at par with fertilizer controls – 75% N + Full dose of PK fertilizers. The use of DNA-based markers further helped to establish the colonization of the inoculated cyanobacteria, especially BF2 and BF3 strains. Our study clearly illustrated the establishment of inoculated cyanobacterial strains and their role in enhancing the crop productivity and soil health of the rice–wheat cropping system.


Sign in / Sign up

Export Citation Format

Share Document