scholarly journals Optimization of growth conditions For zinc Solubilizing Plant Growth associated Bacteria and Fungi

2017 ◽  
Vol 2 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Shabnam S Shaikh  ◽  
Meenu S Saraf
mSystems ◽  
2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Collin M. Timm ◽  
Kelsey R. Carter ◽  
Alyssa A. Carrell ◽  
Se-Ran Jun ◽  
Sara S. Jawdy ◽  
...  

The identification of a common “stress microbiome” indicates tightly controlled relationships between the plant host and bacterial associates and a conserved structure in bacterial communities associated with poplar trees under different growth conditions. The ability of the microbiome to buffer the plant from extreme environmental conditions coupled with the conserved stress microbiome observed in this study suggests an opportunity for future efforts aimed at predictably modulating the microbiome to optimize plant growth.


2021 ◽  
Author(s):  
Tabassum Ara Khanum ◽  
Nasir Mehmood ◽  
Nasira Khatoon

Soil nematodes have advantages as bio-indicators, because they have beneficial role in the food web. Nematodes associated with bacteria are probably the most studied biological indicators of soil fertility. Saprophytic nematodes act as bio-indicators of soil health because they have different beneficial ways to increase in soil functions such as in management of ecosystem; enhancement of nitrogen in soil by ingestion of nitrogen and secrete extra nitrogen as NH4, that is easily absorbable; putrefaction and by dispersion of bacteria and fungi to recently available organic residues. Therefore, nematode are beneficial in increasing soil health or plant growth by providing the nutrient through associated bacteria. So it can be evaluated that the nematodes use as biological indicators of soil fertility because of remarkable diversity and nematode contribution in many functions of the soil fertility.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Geetha Rajendran ◽  
Maheshwari H. Patel ◽  
Sanket J. Joshi

One of the ways to increase the competitive survivability of rhizobial biofertilizers and thus achieve better plant growth under such conditions is by modifying the rhizospheric environment or community by addition of nonrhizobial nodule-associated bacteria (NAB) that cause better nodulation and plant growth when coinoculated with rhizobia. A study was performed to investigate the most commonly associated nodule-associated bacteria and the rhizospheric microorganisms associated with theFenugreek(Trigonella foenum-graecum) plant. Isolation of nonrhizobial isolates from root nodules ofFenugreekwas carried out along with the rhizospheric isolates. About 64.7% isolates obtained fromFenugreeknodules were gram-negative coccobacilli, 29.41% were gram-positive bacilli, and all rhizospheric isolates except one were gram-positive bacilli. All the isolates were characterized for their plant growth promoting (PGP) activities. Two of the NAB isolates M2N2c and B1N2b (Exiguobacterium sp.) showed maximum positive PGP features. Those NAB isolates when coinoculated with rhizobial strain—S. meliloti, showed plant growth promotion with respect to increase in plant’s root and shoot length, chlorophyll content, nodulation efficiency, and nodule dry weight.


2009 ◽  
Vol 329 (1-2) ◽  
pp. 421-431 ◽  
Author(s):  
Tania Taurian ◽  
María Soledad Anzuay ◽  
Jorge Guillermo Angelini ◽  
María Laura Tonelli ◽  
Liliana Ludueña ◽  
...  

2014 ◽  
Vol 4 (8) ◽  
pp. 338-345
Author(s):  
Ibrahim Ahmed Ahmed ◽  
◽  
Gaiballa K. Abdelaziz ◽  
Lazim M. Ahmed ◽  
H. Mohammed Khalid ◽  
...  

OENO One ◽  
2021 ◽  
Vol 55 (4) ◽  
pp. 145-157
Author(s):  
Mónica Oyuela Aguilar ◽  
Florencia Álvarez ◽  
Daniela Medeot ◽  
Edgardo Jofré ◽  
Liliana Semorile ◽  
...  

The rhizosphere-associated microbiome has diverse functions that support plant growth and health, varying among plant species, vegetation growth stages and environmental habitats. This microbiome includes a group of bacteria denominated plant growth-promoting rhizobacteria (PGPR) which can colonize plant roots. Certain PGPR isolates improve the ability of plants to adapt to a stressful environment. In this study, we collected and characterised the rhizosphere-associated bacteria, or epiphytic rhizobacteria, from Malbec and Cabernet-Sauvignon vineyards from the main wine-producing provinces of Argentina to analyse their potential use as biologic fertilisers and/or as pathogen-control agents. A total of 170 bacterial isolates were obtained, distributed into eleven different genera and classified into three phyla, Proteobacteria, Actinobacteria and Firmicutes. The in vitro analysis for plant-growth-promoting (PGP) activities demonstrated that a significant number of bacterial isolates had one or more of these traits. The Pseudomonas was the genus with the highest number of isolates and PGP activities, followed by the Arthrobacter, Serratia, Bacillus andPantoea. We observed that bacterial isolates identified as Bacillus exhibited a remarkable production of hydrolytic enzymes related to biocontrol activities. Biocontrol trials from the Bacillus collection revealed that at least five isolates were able to inhibit the fungal growth of Botrytis cinerea and Alternaria alternata. The results obtained suggest the biological potential of each isolate and the relevance of proceeding to greenhouse and field assays to obtain long-term environmentally compatible bio-products for vineyard management.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Ramona Marasco ◽  
Eleonora Rolli ◽  
Marco Fusi ◽  
Ameur Cherif ◽  
Ayman Abou-Hadid ◽  
...  

Plant-associated bacteria provide important services to host plants. Environmental factors such as cultivar type and pedoclimatic conditions contribute to shape their diversity. However, whether these environmental factors may influence the plant growth promoting (PGP) potential of the root-associated bacteria is not widely understood. To address this issue, the diversity and PGP potential of the bacterial assemblage associated with the grapevine root system of different cultivars in three Mediterranean environments along a macrotransect identifying an aridity gradient were assessed by culture-dependent and independent approaches. According to 16S rRNA gene PCR-DGGE, the structure of endosphere and rhizosphere bacterial communities was highly diverse (P=0.03) and was associated with a cultivar/latitudinal/climatic effect. Despite being diverse, the bacterial communities associated with Egyptian grapevines shared a higher similarity with the Tunisian grapevines than those cultivated in North Italy. A similar distribution, according to the cultivar/latitude/aridity gradients, was observed for the cultivable bacteria. Many isolates (23%) presentedin vitromultiple stress resistance capabilities and PGP activities, the most frequent being auxin synthesis (82%), insoluble phosphate solubilisation (61%), and ammonia production (70%). The comparable numbers and types of potential PGP traits among the three different environmental settings indicate a strong functional homeostasis of beneficial bacteria associated with grape root.


Sign in / Sign up

Export Citation Format

Share Document