scholarly journals Scale-up and Modeling of Oxygen Diffusion Electrodes for Chlorine-Alkali Electrolysis II. Effects of the Structural Parameters on the Electrode Performance Based on the Thin-Film and Flooded-Agglomerate Model

1997 ◽  
Vol 65 (12) ◽  
pp. 1014-1025 ◽  
Author(s):  
Xiao- Lin WANG ◽  
Seiichiro KODA
Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1380
Author(s):  
Marwa M. Tharwat ◽  
Ashwag Almalki ◽  
Amr M. Mahros

In this paper, a randomly distributed plasmonic aluminum nanoparticle array is introduced on the top surface of conventional GaAs thin-film solar cells to improve sunlight harvesting. The performance of such photovoltaic structures is determined through monitoring the modification of its absorbance due to changing its structural parameters. A single Al nanoparticle array is integrated over the antireflective layer to boost the absorption spectra in both visible and near-infra-red regimes. Furthermore, the planar density of the plasmonic layer is presented as a crucial parameter in studying and investigating the performance of the solar cells. Then, we have introduced a double Al nanoparticle array as an imperfection from the regular uniform single array as it has different size particles and various spatial distributions. The comparison of performances was established using the enhancement percentage in the absorption. The findings illustrate that the structural parameters of the reported solar cell, especially the planar density of the plasmonic layer, have significant impacts on tuning solar energy harvesting. Additionally, increasing the plasmonic planar density enhances the absorption in the visible region. On the other hand, the absorption in the near-infrared regime becomes worse, and vice versa.


2013 ◽  
Vol 113 (6) ◽  
pp. 063508 ◽  
Author(s):  
J. C. Debnath ◽  
J. H. Kim ◽  
Y. Heo ◽  
A. M. Strydom ◽  
S. X. Dou

2021 ◽  
Author(s):  
Mona Rostami ◽  
Ferydon Babaei

Abstract In this study, we reported plasmon-exciton coupling for excitation the surface plexciton in columnar thin film with a central exciton slab using the transfer matrix method in Kretschmann configuration. The optical absorption spectra for surface plasmon polariton, surface exciton and surface plexciton was investigated at different structural parameters in proposed structure. The characteristics of surface optical modes were analyzed and there was an anticrossing behavior between polariton branches of plexciton spectra. Localization of surface modes on interfaces and hybridization between plasmons and excitons at both interfaces of exciton slab were proved by the time-averaged Poynting vector. We found that the types of coupling regimes between plasmons and excitons from weak to strong could be achieved. We found a high Rabi splitting energy 840 meV corresponding to the time period 5 fs which includes to the fast energy transfer between surface plasmon polaritons and surface excitons.


2013 ◽  
Vol 6 (1) ◽  
pp. 116-120 ◽  
Author(s):  
Ho-Il Ji ◽  
Jaeyeon Hwang ◽  
Kyung Joong Yoon ◽  
Ji-Won Son ◽  
Byung-Kook Kim ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Wipula Priya Rasika Liyanage ◽  
Manashi Nath

AbstractHighly uniform and vertically aligned p-type CuInSe2 (CISe) nanotube arrays were fabricated through a unique protocol, incorporating confined electrodeposition on lithographically patterned nanoelectrodes. This protocol can be readily adapted to fabricate nanotube arrays of other photoabsorber and functional materials with precisely controllable design parameters. Ternary CISe nanotube arrays were electrodeposited congruently from a single electrolytic bath and the resulting nanotube arrays were studied through powder X-ray diffraction as well as elemental analysis which revealed compositional purity. Detailed photoelectrochemical (PEC) characterizations in a liquid junction cell were also carried out to investigate the photoconversion efficiency. It was observed that the tubular geometry had a strong influence on the photocurrent response and a 29.9% improvement of the photoconversion efficiency was observed with the nanotube array compared to a thin film geometry fabricated by the same process. More interestingly such enhancement in photoconversion efficiency was obtained when the electrode coverage with the nanotube arrays as photoactive material was only a fraction (~10%) of that for the thin film device. Apart from enhancement in photoconversion efficiency, this versatile technique provides ample opportunities to study novel photovoltaic materials and device design architectures where structural parameters play a key role such as resonant light trapping.


2010 ◽  
Vol 1268 ◽  
Author(s):  
Jeffrey L. Johnson ◽  
Haritha Nukala ◽  
Ashish Bhatia ◽  
W.M. Hlaing Oo ◽  
Loren W Rieth ◽  
...  

AbstractCu2ZnSnS4 (CZTS) is an alternative material to Cu(In,Ga)Se2 (CIGSe) for use in thin film photovoltaic absorber layers composed solely of commodity elements [1,2]. Thus, if similar material quality and performance can be realized, its use would allow scale-up of terrestrial thin film photovoltaic production unhindered by material price or supply constraints. Here we report on our research on the deposition of CZTS by RF sputtering from a single CZTS target and co-sputtering from multiple binary sources on Mo-coated glass. We find some samples delaminate during post-sputtering furnace annealing in S vapor. Samples on borosilicate glass (BSG) delaminate much more frequently than those on soda-lime glass (SLG). We investigate the influences of the formation of frangible phases such as MoS2 at the CZTS/Mo interface and residual and thermal mismatch stress on delamination. We implicate fracture in a layer of MoS2 as the mechanism of delamination between the Mo and CZTS layers using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Wafer curvature measurements show significant (˜400 MPa) deposition stress for minimally optimized Mo deposition; however nearly stress-free Mo layers with good adhesion can be deposited using a multi-step Mo deposition recipe. Co-sputtering CZTS adds 100 MPa of stress on both BSG and SLG, however delamination is nearly absent for samples deposited on low-stress Mo layers. We investigate metallic diffusion barrier layers to prevent the formation of MoS2 at the interface. Lastly we discuss the importance of removing Mo oxide by sputter etching before CZTS deposition and its effects on adhesion and series resistance.


Sign in / Sign up

Export Citation Format

Share Document