scholarly journals Fully Automated Computer-Assisted Diagnostic Method for Mitosis Detection on Histology Slide Images of Breast Cancer

2019 ◽  
Vol 16 (Special Issue) ◽  
Author(s):  
Fattane Pourakpour ◽  
Hassan Ghassemian ◽  
Ramin Nateghi
2017 ◽  
Vol 30 (6) ◽  
pp. 796-811 ◽  
Author(s):  
Afsaneh Jalalian ◽  
Syamsiah Mashohor ◽  
Rozi Mahmud ◽  
Babak Karasfi ◽  
M. Iqbal Saripan ◽  
...  

2021 ◽  
Author(s):  
Mustapha Abubakar ◽  
Shaoqi Fan ◽  
Erin Aiello Bowles ◽  
Lea Widemann ◽  
Máire A Duggan ◽  
...  

Abstract Background Benign breast disease (BBD) is a strong breast cancer risk factor but identifying patients that might develop invasive breast cancer remains a challenge. Methods By applying machine-learning to digitized H&E-stained biopsies and computer-assisted thresholding to mammograms obtained circa BBD diagnosis, we generated quantitative tissue composition metrics and determined their association with future invasive breast cancer diagnosis. Archival breast biopsies and mammograms were obtained for women (18-86 years of age) in a case-control study, nested within a cohort of 15,395 BBD patients from Kaiser Permanente Northwest (1970-2012), followed through mid-2015. Cases (n = 514) who developed incident invasive breast cancer and controls (n = 514) were matched on BBD diagnosis age and plan membership duration. All statistical tests were 2-sided. Results Increasing epithelial area on the BBD biopsy was associated with increasing breast cancer risk (Odds ratio [OR]Q4 vs Q1=1.85, 95% confidence interval [CI] = 1.13-3.04; Ptrend=0.02). Conversely, increasing stroma was associated with decreased risk in non-proliferative, but not proliferative, BBD (Pheterogeneity=0.002). Increasing epithelium-to-stroma proportion [ORQ4 vs Q1=2.06, 95% CI = 1.28-3.33; Ptrend=0.002) and percent mammographic density (MBD) (ORQ4 vs Q1=2.20, 95% CI = 1.20-4.03; Ptrend=0.01) were independently and strongly predictive of increased breast cancer risk. In combination, women with high epithelium-to-stroma proportion/high MBD had substantially higher risk than those with low epithelium-to-stroma proportion/low MBD [OR = 2.27, 95% CI = 1.27-4.06; Ptrend=0.005), particularly among women with non-proliferative (Ptrend=0.01) versus proliferative (Ptrend=0.33) BBD. Conclusion Among BBD patients, increasing epithelium-to-stroma proportion on BBD biopsies and percent MBD at BBD diagnosis were independently and jointly associated with increasing breast cancer risk. These findings were particularly striking for women with non-proliferative disease (comprising approximately 70% of all BBD patients), for whom relevant predictive biomarkers are lacking.


Author(s):  
Hadj Ahmed Bouarara

Breast cancer has become a major health problem in the world over the past 50 years and its incidence has increased in recent years. It accounts for 33% of all cancer cases, and 60% of new cases of breast cancer occur in women aged 50 to 74 years. In this work we have proposed a computer-assisted diagnostic (CAD) system that can predict whether a woman has cancer or not by analyzing her mammogram automatically without passing through a biopsy stage. The screening mammogram will be vectorized using the n-gram pixel representation. After the vectors obtained will be classified into one of the classes—with cancer or without cancer—using the social elephant algorithm. The experimentation using the digital database for screening mammography (DDSM) and validation measures—f-measure entropy recall, accuracy, specificity, RCT, ROC, AUC—show clearly the effectiveness and the superiority of our proposed bioinspired technique compared to others techniques existed in the literature such as naïve bayes, Knearest neighbours, and decision tree c4.5. The goal is to help radiologists with early detection to reduce the mortality rate among women with breast cancer.


2015 ◽  
Vol 40 (8) ◽  
pp. 3168-3174 ◽  
Author(s):  
Hannu Huhdanpaa ◽  
Darryl Hwang ◽  
Steven Cen ◽  
Brian Quinn ◽  
Megha Nayyar ◽  
...  

2020 ◽  
Vol 9 (3) ◽  
pp. 749 ◽  
Author(s):  
Tahir Mahmood ◽  
Muhammad Arsalan ◽  
Muhammad Owais ◽  
Min Beom Lee ◽  
Kang Ryoung Park

Breast cancer is the leading cause of mortality in women. Early diagnosis of breast cancer can reduce the mortality rate. In the diagnosis, the mitotic cell count is an important biomarker for predicting the aggressiveness, prognosis, and grade of breast cancer. In general, pathologists manually examine histopathology images under high-resolution microscopes for the detection of mitotic cells. However, because of the minute differences between the mitotic and normal cells, this process is tiresome, time-consuming, and subjective. To overcome these challenges, artificial-intelligence-based (AI-based) techniques have been developed which automatically detect mitotic cells in the histopathology images. Such AI techniques accelerate the diagnosis and can be used as a second-opinion system for a medical doctor. Previously, conventional image-processing techniques were used for the detection of mitotic cells, which have low accuracy and high computational cost. Therefore, a number of deep-learning techniques that demonstrate outstanding performance and low computational cost were recently developed; however, they still require improvement in terms of accuracy and reliability. Therefore, we present a multistage mitotic-cell-detection method based on Faster region convolutional neural network (Faster R-CNN) and deep CNNs. Two open datasets (international conference on pattern recognition (ICPR) 2012 and ICPR 2014 (MITOS-ATYPIA-14)) of breast cancer histopathology were used in our experiments. The experimental results showed that our method achieves the state-of-the-art results of 0.876 precision, 0.841 recall, and 0.858 F1-measure for the ICPR 2012 dataset, and 0.848 precision, 0.583 recall, and 0.691 F1-measure for the ICPR 2014 dataset, which were higher than those obtained using previous methods. Moreover, we tested the generalization capability of our technique by testing on the tumor proliferation assessment challenge 2016 (TUPAC16) dataset and found that our technique also performs well in a cross-dataset experiment which proved the generalization capability of our proposed technique.


Sign in / Sign up

Export Citation Format

Share Document