scholarly journals Quantitative Assessment of the Effects of Climate Change and Human Activities on Grassland NPP in Altay Prefecture

2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Tian Jie ◽  
Xiong Junnan ◽  
Zhang Yichi ◽  
Cheng Weiming ◽  
He Yuchuan ◽  
...  
2017 ◽  
Vol 601-602 ◽  
pp. 1449-1465 ◽  
Author(s):  
Luhua Wu ◽  
Shijie Wang ◽  
Xiaoyong Bai ◽  
Weijun Luo ◽  
Yichao Tian ◽  
...  

2014 ◽  
Vol 72 (11) ◽  
pp. 4273-4282 ◽  
Author(s):  
Chengcheng Gang ◽  
Wei Zhou ◽  
Yizhao Chen ◽  
Zhaoqi Wang ◽  
Zhengguo Sun ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Dandong Cheng ◽  
Guizeng Qi ◽  
Jinxi Song ◽  
Yixuan Zhang ◽  
Hongying Bai ◽  
...  

Quantitative assessment of the contributions of climate change and human activities to vegetation change is important for ecosystem planning and management. To reveal spatial differences in the driving mechanisms of vegetation change in the Qinling Mountains, the changing patterns of the normalized difference vegetation index (NDVI) in the Qinling Mountains during 2000–2019 were investigated through trend analysis and multiple regression residuals analysis. The relative contributions of climate change and human activities on vegetation NDVI change were also quantified. The NDVI shows a significant increasing trend (0.23/10a) from 2000 to 2019 in the Qinling Mountains. The percentage of areas with increasing and decreasing trends in NDVI is 87.96% and 12.04% of the study area, respectively. The vegetation change in the Qinling Mountains is caused by a combination of climate change and human activities. The Tongguan Shiquan line is a clear dividing line in the spatial distribution of drivers of vegetation change. Regarding the vegetation improvement, the contribution of climate change and human activities to NDVI increase is 51.75% and 48.25%, respectively. In the degraded vegetation area, the contributions of climate change and human activities to the decrease in NDVI were 22.11% and 77.89%, respectively. Thus, vegetation degradation is mainly caused by human activities. The implementation of policies, such as returning farmland to forest and grass, has an important role in vegetation protection. It is suggested that further attention should be paid to the role of human activities in vegetation degradation when formulating corresponding vegetation protection measures and policies.


“We regard the recent science –based consensual reports that climate change is, to a large extend, caused by human activities that emit green houses as tenable, Such activities range from air traffic, with a global reach over industrial belts and urban conglomerations to local small, scale energy use for heating homes and mowing lawns. This means that effective climate strategies inevitably also require action all the way from global to local levels. Since the majority of those activities originate at the local level and involve individual action, however, climate strategies must literally begin at home to hit home.”


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hendri Irwandi ◽  
Mohammad Syamsu Rosid ◽  
Terry Mart

AbstractThis research quantitatively and qualitatively analyzes the factors responsible for the water level variations in Lake Toba, North Sumatra Province, Indonesia. According to several studies carried out from 1993 to 2020, changes in the water level were associated with climate variability, climate change, and human activities. Furthermore, these studies stated that reduced rainfall during the rainy season due to the El Niño Southern Oscillation (ENSO) and the continuous increase in the maximum and average temperatures were some of the effects of climate change in the Lake Toba catchment area. Additionally, human interventions such as industrial activities, population growth, and damage to the surrounding environment of the Lake Toba watershed had significant impacts in terms of decreasing the water level. However, these studies were unable to determine the factor that had the most significant effect, although studies on other lakes worldwide have shown these factors are the main causes of fluctuations or decreases in water levels. A simulation study of Lake Toba's water balance showed the possibility of having a water surplus until the mid-twenty-first century. The input discharge was predicted to be greater than the output; therefore, Lake Toba could be optimized without affecting the future water level. However, the climate projections depicted a different situation, with scenarios predicting the possibility of extreme climate anomalies, demonstrating drier climatic conditions in the future. This review concludes that it is necessary to conduct an in-depth, comprehensive, and systematic study to identify the most dominant factor among the three that is causing the decrease in the Lake Toba water level and to describe the future projected water level.


Sign in / Sign up

Export Citation Format

Share Document