scholarly journals A Biometric AsymmetricCryptosystem Software Module Based on Convolutional Neural Networks

Author(s):  
Ilyenko Anna ◽  
◽  
Ilyenko Sergii ◽  
Herasymenko Marharyta

During the research, the analysis of the existing biometric cryptographic systems was carried out. Some methods that help to generate biometric features were considered and compared with a cryptographic key. For comparing compact vectors of biometric images and cryptographic keys, the following methods are analyzed: designing and training of bidirectional associative memory; designing and training of single-layer and multilayer neural networks. As a result of comparative analysis of algorithms for extracting primary biometric features and comparing the generated image to a private key within the proposed authentication system, it was found that deep convolutional networks and neural network bidirectional associative memory are the most effective approach to process the data. In the research, an approach based on the integration of a biometric system and a cryptographic module was proposed, which allows using of a generated secret cryptographic key based on a biometric sample as the output of a neural network. The RSA algorithm is chosen to generate a private cryptographic key by use of convolutional neural networks and Python libraries. The software authentication module is implemented based on the client-server architecture using various internal Python libraries. Such authentication system should be used in systems where the user data and his valuable information resources are stored or where the user can perform certain valuable operations for which a cryptographic key is required. Proposed software module based on convolutional neural networks will be a perfect tool for ensuring the confidentiality of information and for all information-communication systems, because protecting information system from unauthorized access is one of the most pressing problems. This approach as software module solves the problem of secure generating and storing the secret key and author propose combination of the convolutional neural network with bidirectional associative memory, which is used to recognize the biometric sample, generate the image, and match it with a cryptographic key. The use of this software approach allows today to reduce the probability of errors of the first and second kind in authentication system and absolute number of errors was minimized by an average of 1,5 times. The proportion of correctly recognized images by the comparating together convolutional networks and neural network bidirectional associative memory in the authentication software module increased to 96,97%, which is on average from 1,08 times up to 1,01 times The authors further plan a number of scientific and technical solutions to develop and implement effective methods, tools to meet the requirements, principles and approaches to cybersecurity and cryptosystems for provide integrity and onfidentiality of information in experimental computer systems and networks.

Author(s):  
Luis Fernando De Mingo Lopez ◽  
Clemencio Morales Lucas ◽  
NURIA GOMEZ BLAS ◽  
Krassimira Ivanova

This paper presents a study and implementation of a convolutional neural network to identify and recognize humpback whale specimens from the unique patterns of their tails. Starting from a dataset composed of images of whale tails, all the phases of the process of creation and training of a neural network are detailed – from the analysis and pre-processing of images to the elaboration of predictions, using TensorFlow and Keras frameworks. Other possible alternatives are also explained when it comes to tackling this problem and the complications that have arisen during the process of developing this paper.


Author(s):  
Luis Fernando de Mingo López ◽  
Clemencio Morales Lucas ◽  
Nuria Gómez Blas ◽  
Krassimira Ivanova

This paper presents a study and implementation of a convolutional neural network to identify and recognize humpback whale specimens from the unique patterns of their tails. Starting from a dataset composed of images of whale tails, all the phases of the process of creation and training of a neural network are detailed – from the analysis and pre-processing of images to the elaboration of predictions, using TensorFlow and Keras frameworks. Other possible alternatives are also explained when it comes to tackling this problem and the complications that have arisen during the process of developing this paper.


Author(s):  
A. A. Artemyev ◽  
E. A. Kazachkov ◽  
S. N. Matyugin ◽  
V. V. Sharonov

This paper considers the problem of classifying surface water objects, e.g. ships of different classes, in visible spectrum images using convolutional neural networks. A technique for forming a database of images of surface water objects and a special training dataset for creating a classification are presented. A method for forming and training of a convolutional neural network is described. The dependence of the probability of correct recognition on the number and variants of the selection of specific classes of surface water objects is analysed. The results of recognizing different sets of classes are presented.


Author(s):  
Elham Javidmanesh

In this paper, delayed bidirectional associative memory (BAM) neural networks, which consist of one neuron in the X-layer and other neurons in the Y-layer, will be studied. Hopf bifurcation analysis of these systems will be discussed by proposing a general method. In fact, a general n-neuron BAM neural network model is considered, and the associated characteristic equation is studied by classification according to n. Here, n can be chosen arbitrarily. Moreover, we find an appropriate Lyapunov function that under a hypothesis, results in global stability. Numerical examples are also presented.


Author(s):  
Weijun Xie ◽  
Fanchao Kong ◽  
Hongjun Qiu ◽  
Xiangying Fu

AbstractThis paper aims to discuss a class of discontinuous bidirectional associative memory (BAM) neural networks with discrete and distributed delays. By using the set-valued map, differential inclusions theory and fundamental solution matrix, the existence of almost-periodic solutions for the addressed neural network model is firstly discussed under some new conditions. Subsequently, based on the non-smooth analysis theory with Lyapunov-like strategy, the global exponential stability result of the almost-periodic solution for the proposed neural network system is also established without using any additional conditions. The results achieved in the paper extend some previous works on BAM neural networks to the discontinuous case and it is worth mentioning that it is the first time to investigate the almost-periodic dynamic behavior for the BAM neural networks like the form in this paper. Finally, in order to demonstrate the effectiveness of the theoretical schemes, simulation results of two topical numerical examples are delineated.


Author(s):  
Vladyslav Yurochkin ◽  

The paper considers the construction of a system for visualization of hemorrhage segmentation on brain CT images by creating and training a convolutional neural network to optimize the procedure for finding pathology in CT diagnostics.


Author(s):  
K. Jairam Naik ◽  
Annukriti Soni

Since video includes both temporal and spatial features, it has become a fascinating classification problem. Each frame within a video holds important information called spatial information, as does the context of that frame relative to the frames before it in time called temporal information. Several methods have been invented for video classification, but each one is suffering from its own drawback. One of such method is called convolutional neural networks (CNN) model. It is a category of deep learning neural network model that can turn directly on the underdone inputs. However, such models are recently limited to handling two-dimensional inputs only. This chapter implements a three-dimensional convolutional neural networks (CNN) model for video classification to analyse the classification accuracy gained using the 3D CNN model. The 3D convolutional networks are preferred for video classification since they inherently apply convolutions in the 3D space.


Author(s):  
Muhammad Hanif Ahmad Nizar ◽  
Chow Khuen Chan ◽  
Azira Khalil ◽  
Ahmad Khairuddin Mohamed Yusof ◽  
Khin Wee Lai

Background: Valvular heart disease is a serious disease leading to mortality and increasing medical care cost. The aortic valve is the most common valve affected by this disease. Doctors rely on echocardiogram for diagnosing and evaluating valvular heart disease. However, the images from echocardiogram are poor in comparison to Computerized Tomography and Magnetic Resonance Imaging scan. This study proposes the development of Convolutional Neural Networks (CNN) that can function optimally during a live echocardiographic examination for detection of the aortic valve. An automated detection system in an echocardiogram will improve the accuracy of medical diagnosis and can provide further medical analysis from the resulting detection. Methods: Two detection architectures, Single Shot Multibox Detector (SSD) and Faster Regional based Convolutional Neural Network (R-CNN) with various feature extractors were trained on echocardiography images from 33 patients. Thereafter, the models were tested on 10 echocardiography videos. Results: Faster R-CNN Inception v2 had shown the highest accuracy (98.6%) followed closely by SSD Mobilenet v2. In terms of speed, SSD Mobilenet v2 resulted in a loss of 46.81% in framesper- second (fps) during real-time detection but managed to perform better than the other neural network models. Additionally, SSD Mobilenet v2 used the least amount of Graphic Processing Unit (GPU) but the Central Processing Unit (CPU) usage was relatively similar throughout all models. Conclusion: Our findings provide a foundation for implementing a convolutional detection system to echocardiography for medical purposes.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


Sign in / Sign up

Export Citation Format

Share Document