A fuzzy two-stage optimization method for ecosystem planning in Dongying

2018 ◽  
Vol 38 (4) ◽  
Author(s):  
靳舒葳 JIN Shuwei ◽  
张凯 ZHANG Kai
Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Alejandra Ríos ◽  
Eusebio E. Hernández ◽  
S. Ivvan Valdez

This paper introduces a two-stage method based on bio-inspired algorithms for the design optimization of a class of general Stewart platforms. The first stage performs a mono-objective optimization in order to reach, with sufficient dexterity, a regular target workspace while minimizing the elements’ lengths. For this optimization problem, we compare three bio-inspired algorithms: the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), and the Boltzman Univariate Marginal Distribution Algorithm (BUMDA). The second stage looks for the most suitable gains of a Proportional Integral Derivative (PID) control via the minimization of two conflicting objectives: one based on energy consumption and the tracking error of a target trajectory. To this effect, we compare two multi-objective algorithms: the Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D) and Non-dominated Sorting Genetic Algorithm-III (NSGA-III). The main contributions lie in the optimization model, the proposal of a two-stage optimization method, and the findings of the performance of different bio-inspired algorithms for each stage. Furthermore, we show optimized designs delivered by the proposed method and provide directions for the best-performing algorithms through performance metrics and statistical hypothesis tests.


2010 ◽  
Vol 156-157 ◽  
pp. 10-17 ◽  
Author(s):  
Er Shun Pan ◽  
Yao Jin ◽  
Zhao Mei ◽  
Ying Wang

A stencil printing process (SPP) optimization problem is studied in this paper. Due to the limitation that neural network requires a large number of samples for the accurate model fitting, a two-stage SPP optimization method is proposed. The design interval can be reduced with small sample by using neural network. In this reduced design interval , response surface method is adopted to obtain the accurate mathematical SPP model. The concept of confidence level is introduced to make the proposed model robust. An interactive method is used to solve the model. The proposed method is compared with the one-stage optimization method and the results show that the proposed method achieves a better performance on each objective.


2016 ◽  
Vol 8 (11) ◽  
pp. 168781401667956 ◽  
Author(s):  
Kai Li ◽  
Yunlong Wang ◽  
Yan Lin ◽  
Wei Xu ◽  
Manting Liu

2018 ◽  
Vol 28 (02) ◽  
pp. 1950021
Author(s):  
B. Ghanavati ◽  
E. Abiri ◽  
M. R. Salehi ◽  
N. Azhdari

In this paper, a two-stage time interpolation time-to-digital converter (TDC) is proposed to achieve adequate resolution and wide dynamic range for measuring R-R intervals in QRS detection. The architecture is based on a coarse counter and a couple of two-stage interpolator circuit in order to improve the conversion linearity. The proposed TDC is modeled with the neural network, while the teacher–learner-based optimization algorithm (TLBO) is used to optimize the integral nonlinearity (INL) of the proposed TDC. The proposed optimization method shows a characteristic close to the ideal output of the TDC behavior over a wide input range. Using the achieved results of the TLBO algorithm simulation results using CADENCE VIRTUOSO and standard 180[Formula: see text]nm CMOS technology shows 1.2[Formula: see text]s dynamic range, 100[Formula: see text]ns resolution, 0.19[Formula: see text]mW power consumption and area of 0.16[Formula: see text]mm2. The proposed circuit can find application in biomedical engineering systems and other fields where long and accurate time interval measurement is needed.


2019 ◽  
Vol 30 (6) ◽  
pp. 3323-3348
Author(s):  
Abbas Naeimi ◽  
Mohammad Hossein Ahmadi ◽  
Milad Sadeghzadeh ◽  
Alibakhsh Kasaeian

Purpose This paper aims to determine the optimum arrangement of a reverse osmosis system in two methods of plug and concentrate recycling. Design/methodology/approach To compare the optimum conditions of these two methods, a seawater reverse osmosis system was considered to produce fresh water at a rate of 4,000 m3/d for Mahyarkala city, located in north of Iran, for a period of 20 years. Using genetic algorithms and two-objective optimization method, the reverse osmosis system was designed. Findings The results showed that exergy efficiency in optimum condition for concentrate recycling and plug methods was 82.6 and 92.4 per cent, respectively. The optimizations results showed that concentrate recycling method, despite a 36 per cent reduction in the initial cost and a 2 per cent increase in maintenance expenses, provides 6 per cent higher recovery and 19.7 per cent less permeate concentration than two-stage plug method. Originality/value Optimization parameters include feed water pressure, the rate of water return from the brine for concentrate recycling system, type of SW membrane, feedwater flow rate and numbers of elements in each pressure vessel (PV). These parameters were also compared to each other in terms of recovery (R) and freshwater unit production cost. In addition, the exergy of all elements was analyzed by selecting the optimal mode of each system.


Author(s):  
Zhijun Liu ◽  
Shingo Cho ◽  
Akihiro Takezawa ◽  
Xiaopeng Zhang ◽  
Mitsuru Kitamura

Sign in / Sign up

Export Citation Format

Share Document