scholarly journals A novel two-stage optimization method for beam–plate structure design

2016 ◽  
Vol 8 (11) ◽  
pp. 168781401667956 ◽  
Author(s):  
Kai Li ◽  
Yunlong Wang ◽  
Yan Lin ◽  
Wei Xu ◽  
Manting Liu
Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 543
Author(s):  
Alejandra Ríos ◽  
Eusebio E. Hernández ◽  
S. Ivvan Valdez

This paper introduces a two-stage method based on bio-inspired algorithms for the design optimization of a class of general Stewart platforms. The first stage performs a mono-objective optimization in order to reach, with sufficient dexterity, a regular target workspace while minimizing the elements’ lengths. For this optimization problem, we compare three bio-inspired algorithms: the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO), and the Boltzman Univariate Marginal Distribution Algorithm (BUMDA). The second stage looks for the most suitable gains of a Proportional Integral Derivative (PID) control via the minimization of two conflicting objectives: one based on energy consumption and the tracking error of a target trajectory. To this effect, we compare two multi-objective algorithms: the Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D) and Non-dominated Sorting Genetic Algorithm-III (NSGA-III). The main contributions lie in the optimization model, the proposal of a two-stage optimization method, and the findings of the performance of different bio-inspired algorithms for each stage. Furthermore, we show optimized designs delivered by the proposed method and provide directions for the best-performing algorithms through performance metrics and statistical hypothesis tests.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Bin Wang ◽  
Gensheng Li ◽  
Zhongwei Huang ◽  
Tianqi Ma ◽  
Dongbo Zheng ◽  
...  

Radial jet drilling (RJD) is an efficient approach for improving the productivity of wells in low permeability, marginal and coal-bed methane (CBM) reservoirs at a very low cost. It uses high-pressure water jet to drill lateral holes from a vertical wellbore. The length of the lateral holes is greatly influenced by the frictional resistance in the hole deflector. However, the hole deflector frictional resistance and structure design have not been well studied. This work fills that gap. Frictional resistances were measured in a full-scale experiment and calculated by numerical simulation. The structure of the hole deflector was parameterized and a geometric model was developed to design the hole deflector track. An empirical model was then established to predict the frictional resistance as a function of the hole deflector structure parameters and an optimization method for designing the hole deflector was proposed. Finally, four types of hole deflectors were optimized using this method. The results show good agreement between the numerical simulation and the experimental data. The model error is within 11.6%. The bend radius R and exit angle β are the key factors affecting the performance of the hole deflector. The validation test was conducted for a case hole deflector (5½ in. casing). The measured frictional resistance was decreased from 31.44 N to 23.16 N by 26.34%. The results from this research could serve as a reference for the design of hole deflectors for radial jet drilling.


2010 ◽  
Vol 156-157 ◽  
pp. 10-17 ◽  
Author(s):  
Er Shun Pan ◽  
Yao Jin ◽  
Zhao Mei ◽  
Ying Wang

A stencil printing process (SPP) optimization problem is studied in this paper. Due to the limitation that neural network requires a large number of samples for the accurate model fitting, a two-stage SPP optimization method is proposed. The design interval can be reduced with small sample by using neural network. In this reduced design interval , response surface method is adopted to obtain the accurate mathematical SPP model. The concept of confidence level is introduced to make the proposed model robust. An interactive method is used to solve the model. The proposed method is compared with the one-stage optimization method and the results show that the proposed method achieves a better performance on each objective.


2011 ◽  
Vol 399-401 ◽  
pp. 2296-2300
Author(s):  
Wen Jie Peng ◽  
Rui Ge ◽  
Ming Kai Gu

This paper presents an optimization method for optimal engineering structure design. An interface procedure is essentially developed to combine the intelligent optimization algorithm and computer aided engineering (CAE) code. An optimization example is carried out to minimize the interlaminar normal stress of a laminate which affect the delamination failure of a laminate via arranging the stacking sequence. The analytical solution is calculated to validate the accuracy of optimization results.


2018 ◽  
Vol 28 (02) ◽  
pp. 1950021
Author(s):  
B. Ghanavati ◽  
E. Abiri ◽  
M. R. Salehi ◽  
N. Azhdari

In this paper, a two-stage time interpolation time-to-digital converter (TDC) is proposed to achieve adequate resolution and wide dynamic range for measuring R-R intervals in QRS detection. The architecture is based on a coarse counter and a couple of two-stage interpolator circuit in order to improve the conversion linearity. The proposed TDC is modeled with the neural network, while the teacher–learner-based optimization algorithm (TLBO) is used to optimize the integral nonlinearity (INL) of the proposed TDC. The proposed optimization method shows a characteristic close to the ideal output of the TDC behavior over a wide input range. Using the achieved results of the TLBO algorithm simulation results using CADENCE VIRTUOSO and standard 180[Formula: see text]nm CMOS technology shows 1.2[Formula: see text]s dynamic range, 100[Formula: see text]ns resolution, 0.19[Formula: see text]mW power consumption and area of 0.16[Formula: see text]mm2. The proposed circuit can find application in biomedical engineering systems and other fields where long and accurate time interval measurement is needed.


Sign in / Sign up

Export Citation Format

Share Document