Effects of soil water storage efficiency on winter wheat water use efficiency in different precipitation areas during the fallow period in the Loess Plateau, western China

2017 ◽  
Vol 37 (17) ◽  
Author(s):  
贾建英 JIA Jianying ◽  
赵俊芳 ZHAO Junfang ◽  
万信 WAN Xin ◽  
韩兰英 HAN Lanying ◽  
王小巍 WANG Xiaowei ◽  
...  
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8892
Author(s):  
Shahbaz Khan ◽  
Sumera Anwar ◽  
Yu Shaobo ◽  
Zhiqiang Gao ◽  
Min Sun ◽  
...  

Sustainability of winter wheat yield under dryland conditions depends on improving soil water stored during fallow and its efficient use. A 3-year field experiment was conducted in Loess Plateau to access the effect of tillage and N (nitrogen) rates on soil water, N distribution and water- and nitrogen-use efficiency of winter wheat. Deep tillage (DT, 25–30 cm depth) and no-tillage (NT) were operated during fallow season, whereas four N rates (0, 90, 150 and 210 kg ha−1) were applied before sowing. Rates of N and variable rainfall during summer fallow period led to the difference of soil water storage. Soil water storage at anthesis and maturity was decreased with increasing N rate especially in the year with high precipitation (2014–2015). DT has increased the soil water storage at sowing, N content, numbers of spike, grain number, 1,000 grain weight, grain yield, and water and N use efficiency as compared to NT. Grain yield was significantly and positively related to soil water consumption at sowing to anthesis and anthesis to maturity, total plant N, and water-use efficiency. Our study implies that optimum N rate and deep tillage during the fallow season could improve dryland wheat production by balancing the water consumption and biomass production.


2015 ◽  
Vol 107 (6) ◽  
pp. 2059-2068 ◽  
Author(s):  
Yanlong Chen ◽  
Ting Liu ◽  
Xiaohong Tian ◽  
Xiaofeng Wang ◽  
Huilin Chen ◽  
...  

2002 ◽  
Vol 55 (3) ◽  
pp. 203-216 ◽  
Author(s):  
Shaozhong Kang ◽  
Lu Zhang ◽  
Yinli Liang ◽  
Xiaotao Hu ◽  
Huanjie Cai ◽  
...  

2017 ◽  
Vol 55 (2) ◽  
pp. 210-218 ◽  
Author(s):  
S. Podlaski ◽  
S. Pietkiewicz ◽  
D. Choluj ◽  
T. Horaczek ◽  
G. Wisniewski ◽  
...  

2018 ◽  
Vol 64 (No. 7) ◽  
pp. 330-337 ◽  
Author(s):  
Akhtar Kashif ◽  
Wang Weiyu ◽  
Khan Ahmad ◽  
Ren Guangxin ◽  
Afridi Muhammad Zahir ◽  
...  

Field studies using wheat straw mulching effects on soil water storage and maize development were conducted in China. The studies contained four treatments during three years (2014–2016): CK (no straw and no nitrogen); N (no straw mulching with 172 kg N/ha); HS + N (half straw mulching at the rate of 2500 kg/ha with 172 kg N/ha), and FS + N (full straw mulching at the rate of 5000 kg/ha with 172 kg N/ha). The FS + N treatment significantly increased soil water storage in a drought period during crop growth stages and promoted plant growth along with increased evapotranspiration. The FS + N treatment increased the soil water storage (26.5, 19.9 and 11.1 mm), grain yield (28.7, 6.93 and 2.4%), and water use efficiency (26.6, 6.64 and 2.40%) compared to CK, N and HS + N, respectively. In conclusion, compared to N, HS + N or FS + N increased the biomass (11 and 19%) and water use efficiency (4 and 5%), respectively, and are considered beneficial in Guanzhong, China. Mulching levels were superior to N and compensated the wheat nitrogen requirements. Thus, further studies with minimum fertilizer nitrogen for an environmentally friendly and effective approach are recommended in semiarid regions of China.


Sign in / Sign up

Export Citation Format

Share Document