C282Y Mutation and Hepatic Iron Status in Hepatitis C and Cryptogenic Cirrhosis

2000 ◽  
Vol 124 (11) ◽  
pp. 1632-1635
Author(s):  
Priti Lal ◽  
Helen Fernandes ◽  
Baburao Koneru ◽  
Ernest Albanese ◽  
Meera Hameed

Abstract Background.—Increased iron deposition in liver is seen in both primary and secondary hemochromatosis. However, it is not uncommon to see significant iron deposition in a liver biopsy, explant, or autopsy specimen without any significant clinical risk factor. Because of the discovery of the candidate gene (HFE) for hereditary hemochromatosis, we may now be able to screen high-risk patient populations for the abnormal mutation (C282Y). Materials and Methods.—In this study we analyzed the livers of 50 transplant patients with a diagnosis of either hepatitis C cirrhosis or cryptogenic cirrhosis for the prevalence of the more common C282Y mutation of the HFE gene and correlated the findings to hepatic iron concentration. Results.—Of the 26 cases of hepatitis C cirrhosis, 3 were found to be heterozygous for the C282Y mutation. Of the 22 cases of cryptogenic cirrhosis, 1 was found to be heterozygous for the C282Y mutation. Stainable iron was increased in hepatitis C cirrhosis (76.9%) as compared to cryptogenic cirrhosis (50%) (P = .05). Of the 3 heterozygotes with hepatitis C cirrhosis, 2 showed hepatic iron concentrations of 3+ and 4+, and 1 showed 1+. Conclusions.—We conclude that patients with hepatitis C have an increased tendency to accumulate iron in the liver, and mutations in the HFE gene play a minor role in hepatic accumulation of iron in these patients.

2020 ◽  
Vol 13 (2) ◽  
pp. 712-715
Author(s):  
Mustafa A. Al-Tikrity ◽  
Mohamed A. Yassin

Primary hemochromatosis is an inherited disorder, and the homeostatic iron regulator (HFE) gene C282Y mutation is a common cause of hemochromatosis in Europe. We are reporting a case of a 56-year-old female known to have hemochromatosis with the HFE gene C282Y mutation with a serum ferritin level of 482 μg/L who underwent heart and liver T2* MRI which showed no evidence of iron overload – neither in the heart nor in the liver. This indicates that there is a discrepancy between serum ferritin and liver iron concentration by MRI and the superiority of T2* MRI in diagnosis and follow-up of iron overload in patients with hereditary hemochromatosis.


2013 ◽  
Vol 88 (4) ◽  
pp. 530-540 ◽  
Author(s):  
Fatima Mendonca Jorge Vieira ◽  
Maria Cristina Nakhle ◽  
Clarice Pires Abrantes-Lemos ◽  
Eduardo Luiz Rachid Cancado ◽  
Vitor Manoel Silva dos Reis

BACKGROUND: Porphyria cutanea tarda is the most common form of porphyria, characterized by the decreased activity of the uroporphyrinogen decarboxylase enzyme. Several reports associated HFE gene mutations of hereditary hemochromatosis with porphyria cutanea tarda worldwide, although up to date only one study has been conducted in Brazil. OBJECTIVES: Investigation of porphyria cutanea tarda association with C282Y and H63D mutations in the HFE gene. Identification of precipitating factors (hepatitis C, HIV, alcoholism and estrogen) and their link with HFE mutations. METHODS: An ambispective study of 60 patients with PCT was conducted during the period from 2003 to 2012. Serological tests for hepatitis C and HIV were performed and histories of alcohol abuse and estrogen intake were investigated. HFE mutations were identified with real-time PCR. RESULTS: Porphyria cutanea tarda predominated in males and alcohol abuse was the main precipitating factor. Estrogen intake was the sole precipitating factor present in 25% of female patients. Hepatitis C was present in 41.7%. All HIV-positive patients (15.3%) had a history of alcohol abuse. Allele frequency for HFE mutations, i.e., C282Y (p = 0.0001) and H63D (p = 0.0004), were significantly higher in porphyria cutanea tarda patients, compared to control group. HFE mutations had no association with the other precipitating factors. CONCLUSIONS: Alcohol abuse, hepatitis C and estrogen intake are prevalent precipitating factors in our porphyria cutanea tarda population; however, hemochromatosis in itself can also contribute to the outbreak of porphyria cutanea tarda, which makes the research for HFE mutations necessary in these patients


2003 ◽  
Vol 37 (5) ◽  
pp. 406-411 ◽  
Author(s):  
Anne M. Larson ◽  
Shari L. Taylor ◽  
Donald Bauermeister ◽  
Leonard Rosoff, ◽  
Kris V. Kowdley

Blood ◽  
2007 ◽  
Vol 109 (10) ◽  
pp. 4511-4517 ◽  
Author(s):  
Maja Vujic Spasic ◽  
Judit Kiss ◽  
Thomas Herrmann ◽  
Regina Kessler ◽  
Jens Stolte ◽  
...  

Abstract Mutations in the Hfe gene result in hereditary hemochromatosis (HH), a disorder characterized by increased duodenal iron absorption and tissue iron overload. Identification of a direct interaction between Hfe and transferrin receptor 1 in duodenal cells led to the hypothesis that the lack of functional Hfe in the duodenum affects TfR1-mediated serosal uptake of iron and misprogramming of the iron absorptive cells. Contrasting this view, Hfe deficiency causes inappropriately low expression of the hepatic iron hormone hepcidin, which causes increased duodenal iron absorption. We specifically ablated Hfe expression in mouse enterocytes using Cre/LoxP technology. Mice with efficient deletion of Hfe in crypt- and villi-enterocytes maintain physiologic iron metabolism with wild-type unsaturated iron binding capacity, hepatic iron levels, and hepcidin mRNA expression. Furthermore, the expression of genes encoding the major intestinal iron transporters is unchanged in duodenal Hfe-deficient mice. Our data demonstrate that intestinal Hfe is dispensable for the physiologic control of systemic iron homeostasis under steady state conditions. These findings exclude a primary role for duodenal Hfe in the pathogenesis of HH and support the model according to which Hfe is required for appropriate expression of the “iron hormone” hepcidin which then controls intestinal iron absorption.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1859-1859
Author(s):  
Patricia Aguilar-Martinez ◽  
Severine Cunat ◽  
Fabienne Becker ◽  
Francois Blanc ◽  
Marlene Nourrit ◽  
...  

Abstract Introduction: Homozygozity for the p.Cys282Tyr (C282Y) mutation of the HFE gene is the main genotype associated with the common form of adult hereditary hemochromatosis. C282Y carriers do not usually develop iron overload, unless they have additional risk factors such as liver diseases, a dysmetabolic syndrome or an associated genetic defect. The commonest is the compound heterozygous state for C282Y and the widespread p.His63Asp (H63D) variant allele. However, a few rare HFE mutations can be found on the 6th chromosome in trans, some of which are of clinical interest to fully understand the disorder. Patients and Methods: We recently investigated four C282Y carrier patients with unusually high iron parameters, including increased levels of serum ferritin (SF), high transferrin saturation (TS) and high iron liver content measured by MRI. They were males, aged 37, 40, 42, 47 at diagnosis. Two brothers (aged 40 and 42) were referred separately. The HFE genotype, including the determination of the C282Y, H63D and S65C mutations was performed using PCR-RFLP. HFE sequencing was undertaken using the previously described SCA method (1). Sequencing of other genes (namely, HAMP, HJV/HFE2, SLC40A1, TFR2) was possibly performed in a last step using the same method. Results: We identified three rare HFE mutant alleles, two of which are undescribed, in the four studied patients. One patient bore a 13 nucleotide-deletion in exon 6 (c.[1022_1034del13], p.His341_Ala345>LeufsX119), which is predicted to lead to an abnormal, elongated protein. The two brothers had a substitution of the last nucleotide of exon 2 (c.[340G>A], p.Glu114Lys) that may modify the splicing of the 2d intron. The third patient, who bore an insertion of a A in exon 4 (c.[794dupA],p.[trp267LeufsX80]), has already been reported (1). Discussion: A vast majority of C282Y carriers will not develop iron overload and can be reassured. However, a careful step by step strategy at the clinical and genetic levels may allow to correctly identify those patients deserving further investigation. First, clinical examination and the assessment of iron parameters (SF and TS) allow identifying C282Y heterozygotes with an abnormal iron status. Once extrinsic factors such as heavy alcohol intake, virus or a dysmetabolic syndrome have been excluded, MRI is very useful to authenticate a high liver iron content. Second, HFE genotype must first exclude the presence of the H63D mutation. Compound heterozygozity for C282Y and H63D, a very widespread condition in our area, is usually associated with mild iron overload. Third, HFE sequencing can be undertaken and may identify new HFE variants as described here. The two novel mutations, a frameshift modifying the composition and the length of the C terminal end of the HFE protein and a substitution located at the last base of an exon, are likely to lead to an impaired function of HFE in association with the C282Y mutant. However, it is noteworthy that three of the four patients were diagnosed relatively late, after the 4th decade, as it is the case for C282Y homozygotes. Three further unrelated patients are currently under investigation in our laboratory for a similar clinical presentation. Finally, it can be noted that in those patients who will not have a HFE gene mutant identified, analysis of other genes implicated in iron overload must be performed to search for digenism or multigenism. None of our investigated patients had an additional gene abnormality.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5382-5382
Author(s):  
Rodolfo D Cancado ◽  
Paulo CJL Santos ◽  
Samuel Rostelato ◽  
Cristiane T Terada ◽  
Iris Gonzales ◽  
...  

Abstract Hereditary hemochromatosis (HH) is a disorder characterized by increased intestinal iron absorption, which leads to a progressive accumulation of iron in the body. This iron overload has been associated with mutations in HFE gene (C282Y, H63D and S65C) and other genes. The objectives of this study were to assess the frequencies of functional mutations in HFE and TFR2 genes and to investigate their relationship with the iron status in a sample of blood donors. Blood donors (n=542) were recruited at the Hemocenter of the Santa Casa Hospital, Sao Paulo, Brazil. The genotypes for HFE (C282Y, H63D and S65C) TFR2 (Y250X and Q690P) gene mutations were evaluated by PCR-RFLP. The concentrations of serum iron and total iron-binding capacity (TIBC) were measured by automation system Advia®(Bayer Diagnostics) and serum ferritin by Axsym System®(Abbott Laboratories). The frequencies of HFE 282Y, HFE 63D and HFE 65C alleles were 2.1, 13.6 and 0.6%, respectively. The frequency C282Y allele (2.1%) in Brazilian blood donors is lower than that observed in blood donors from Northern Europe (5.1 to 8.2%, P<0.05). The TFR2 250X and TFR2 690P alleles were not found in these subjects. The iron status was similar between HFE genotypes in women. However, men carrying HFE 282CY genotype had higher serum ferritin and lower TIBC concentrations when compared to the HFE 282CC genotype carriers. HFE 282CY genotype was also associated with higher transferrin saturation in men who donated blood at the first time. Moreover, male donors with HFE 63DD plus 63HD genotypes had higher serum iron and transferrin saturation when compared to those with HFE 63HH genotype. A relationship between HFE CY/HH/SS haplotype and lower TIBC concentrations was also found in men. The HFE 282Y and HFE 65C alleles were rare while the HFE 63D was frequent in blood donors. The mutations in TFR2 gene were not found in this study. The HFE 282Y and HFE 63D alleles were associated with alterations on iron status only in male blood donors.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e18556-e18556
Author(s):  
Rama Nanah ◽  
Mrinal Patnaik ◽  
Naseema Gangat ◽  
Darci Zblewski ◽  
Rong He ◽  
...  

e18556 Background: RARS is a subtype of myelodysplastic syndromes (MDS) defined by < 5% blasts and ≥15% ring sideroblasts (WHO 2008). Hereditary hemochromatosis is a disorder characterized by dysregulations in iron absorption, largely associated with C282Y and H63D mutations of the HFE gene. Iron levels are elevated in both disorders and pathophysiologic correlations were suggested. HFE gene mutations were previously found higher in MDS compared to controls (50% vs 36%) ( Nearman et al, Am J Hematol 2007). Methods: A total of 168 RARS patients’ data from 1994 to 2015 at Mayo Clinic were reviewed after appropriate IRB approval was obtained. All cases had their bone marrow slides reviewed at our center. We searched patients’ records retrospectively to Identify those tested for HFE gene (C282Y, H62D, S65C) mutations, done inside or outside our institution. Survival estimates were calculated using Kaplan-Meier curves. Results: Out of the 168 RARS patients, only 17 (10%) were tested for HFE gene mutations. Out of the 17 tested, 11 (65%) were found to have mutations; 2 of which (18%) had homozygous H63D mutation, 1 patient (9%) had double heterozygous H63D and C282Y mutations, 5 (45%) had only one H36D heterozygous mutation vs 3 patients (27%) with only one C282Y heterozygous mutation. Only one patient was tested for the additional S65C mutation and it was not detected. H63D mutation was present in a total of 8 patients (73%) vs C282Y mutation which was present in 4 patients (36%). Bone marrow iron stores were increased in all 17 tested patients, except one who had decreased stores, this patient had one heterozygous C282Y mutation. Median overall survival (mOS) was 117 months in the HFE mutated patients vs 75 months in the non-mutated (p = 0.6). Conclusions: Our study found the HFE gene, when tested, to be mutated in higher frequencies among patients with RARS compared to that reported in the general population (65% vs 36%), with H63D mutation in almost three quarters of all mutated patients. Although it did not reach statistical significance, the longer survival observed among HFE mutated patients compared to the wild-type raises the question whether testing for HFE gene mutations among patients with MDS-RARS should be further explored.


Sign in / Sign up

Export Citation Format

Share Document