Natural enemies handbook: the illustrated guide to biological pest control

1999 ◽  
Vol 37 (01) ◽  
pp. 37-0309-37-0309
2020 ◽  
Vol 10 (2) ◽  
pp. 709-716
Author(s):  
M. Mala ◽  
M. M. I. Mollah ◽  
M. Baishnab

Traditional there are two strategies to handle pest problems in crop production, either dependence on non-chemical agricultural practices (such as cultural, mechanical, biological practices etc.) or reliance on existing natural pest control mechanisms. Intercropping is a cultural non-chemical agricultural practice where two or more crops are grown on the same field in a year with different cropping patterns. In this multiple cropping system, biodiversity and pest suppression are increased. Biodiversity can restore the natural elements of agro ecosystem because almost all favorable elements of natural enemies are available in diversified agro ecosystem. Energy intensive modern technology in agriculture is one of the vital causes for loss of biodiversity. In intercropping system biological pest control method can be ensured with higher level of crop diversity instead of energy intensive agriculture. Intercropping provides different benefits on pest management with two available hypotheses or mechanism. One of the hypotheses is the ‘resource concentration hypothesis’ and another is the ‘natural enemies hypothesis’. Intercropping, directly and indirectly, influences to increase biodiversity which results in reduction of pest densities in crop fields. As a result, less expense for use of pesticide is required and finally higher yield also add some financial benefits. Intercropping system utilizes inherent ability of plant to protect pests. Therefore further knowledge about genotypic crop diversity, diversity of natural enemies, chemically-mediated mechanisms of Volatile Organic Compounds (VOCs) will be effective for further improvement of intercropping system for greater benefits.


2008 ◽  
Vol 03 (01n02) ◽  
pp. 241-256 ◽  
Author(s):  
MARAT RAFIKOV ◽  
JOSÉ MANOEL BALTHAZAR ◽  
HUBERTUS F. VON BREMEN

The aim of this paper is to study the cropping system as complex one, applying methods from theory of dynamic systems and from the control theory to the mathematical modeling of the biological pest control. The complex system can be described by different mathematical models. Based on three models of the pest control, the various scenarios have been simulated in order to obtain the pest control strategy only through natural enemies' introduction.


Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 933
Author(s):  
Gerben J. Messelink ◽  
Jérôme Lambion ◽  
Arne Janssen ◽  
Paul C. J. van Rijn

One of the ecosystem services of biodiversity is the contribution to pest control through conservation and stimulation of natural enemies. However, whether plant diversity around greenhouses is beneficial or a potential risk is heavily debated. In this review, we argue that most greenhouse pests in temperate climates are of exotic origin and infest greenhouses mainly through transportation of plant material. For indigenous pests, we discuss the potential ways in which plant diversity around greenhouses can facilitate or prevent pest migrations into greenhouses. As shown in several studies, an important benefit of increased plant diversity around greenhouses is the stimulation of indigenous natural enemies that migrate to greenhouses, where they suppress both indigenous and exotic pests. How this influx can be supported by specific plant communities, plant characteristics, and habitats while minimising risks of increasing greenhouse pest densities, virus transmission, or hyperparasitism needs further studies. It also requires a better understanding of the underlying processes that link biodiversity with pest management. Inside greenhouses, plant biodiversity can also support biological control. We summarise general methods that growers can use to enhance pest control with functional biodiversity and suggest that it is particularly important to study how biodiversity inside and outside greenhouses can be linked to enhancement of biological pest control with both released and naturally occurring species of natural enemies.


Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 533
Author(s):  
Frédéric Francis ◽  
Hans Jacquemyn ◽  
Frank Delvigne ◽  
Bart Lievens

Integrated pest management (IPM) is today a widely accepted pest management strategy to select and use the most efficient control tactics and at the same time reduce over-dependence on chemical insecticides and their potentially negative environmental effects. One of the main pillars of IPM is biological control. While biological control programs of pest insects commonly rely on natural enemies such as predatory insects, parasitoids and microbial pathogens, there is increasing evidence that plant, soil and insect microbiomes can also be exploited to enhance plant defense against herbivores. In this mini-review, we illustrate how microorganisms from diverse origins can contribute to plant fitness, functional traits and indirect defense responses against pest insects, and therefore be indirectly used to improve biological pest control practices. Microorganisms in the rhizosphere, phyllosphere and endosphere have not only been shown to enhance plant growth and plant strength, but also promote plant defense against herbivores both above- and belowground by providing feeding deterrence or antibiosis. Also, herbivore associated molecular patterns may be induced by microorganisms that come from oral phytophagous insect secretions and elicit plant-specific responses to herbivore attacks. Furthermore, microorganisms that inhabit floral nectar and insect honeydew produce volatile organic compounds that attract beneficial insects like natural enemies, thereby providing indirect pest control. Given the multiple benefits of microorganisms to plants, we argue that future IPMs should consider and exploit the whole range of possibilities that microorganisms offer to enhance plant defense and increase attraction, fecundity and performance of natural enemies.


2019 ◽  
Vol 11 (22) ◽  
pp. 6399 ◽  
Author(s):  
Prisila A. Mkenda ◽  
Patrick A. Ndakidemi ◽  
Philip C. Stevenson ◽  
Sarah E. J. Arnold ◽  
Steven R. Belmain ◽  
...  

Non-crop vegetation around farmland can be valuable habitats for enhancing ecosystem services but little is known of the importance of field margins in supporting natural enemies of insect pests in tropical agriculture. This study was conducted in smallholder bean fields in three elevation zones to assess the importance of field margin vegetation to natural enemy populations and movement to the bean crop for biological pest control. The pests and natural enemies were assessed using different coloured water pan traps (to ensure the capture of insects with different colour preferences) and the interactions of the two arthropod groups with the margin vegetation and their movement to the bean crop were monitored using fluorescent dye. Sentinel plants were used to assess predation and parasitism levels. A total of 5003 natural enemies were captured, more in the field margin than within the bean field for low and mid elevation zones, while in the high elevation zone, they were more abundant within the bean field. Pests were more abundant in the crop than margins for all the elevation zones. The use of a dye applied to margin vegetation demonstrated that common natural enemy taxa moved to the crop during the days after dye application. The proportion of dye-marked natural enemies (showing their origin to be margin vegetation) sampled from the crop suggest high levels of spatial flux in the arthropod assemblage. Aphid mortality rates (measured by prey removal and parasitism levels on sentinel plants) did not differ between the field edges and field centre in any of the three elevation zones, suggesting that for this pest taxon, the centre of the fields still receive comparable pest control service as in the field edges. This study found that field margins around smallholder bean fields are useful habitats to large numbers of natural enemy taxa that move to adjacent crops providing biological pest control service.


2021 ◽  
Author(s):  
Xu Chen ◽  
Coline C. Jaworski ◽  
Huijie Dai ◽  
Yuyong Liang ◽  
Xiaojun Guo ◽  
...  

Abstract Banker plants increase biological pest control by supporting populations of non-pest arthropod species used as alternative hosts or prey by natural enemies. Due to the specificity of trophic interactions, banker plants may not efficiently promote natural enemies with different ecologies. Yet in most cropping systems different pest species are present together and require different biocontrol agents to efficiently control them. In the present study, we tested the combined use of two banker plants and their associated prey / host to enhance populations of the specialist parasitoid Encarsia formosa targeting the main tomato pest Bemisia tabaci, and a polyphagous ladybird Propylea japonica targeting the secondary pest Myzus persicae in tomato crops. In a laboratory and a greenhouse experiment, we measured the abundances of these four species using the Ricinus communis – Trialeurodes ricini banker plant system alone, in combination with the Glycines max – Megoura japonica system, or in absence of banker plants. We found that the first banker plant system enhanced populations of E. formosa, resulting in higher control of B. tabaci populations and the suppression of their outbreak in both our laboratory and greenhouse experiment. Conversely, abundances of P. japonica were not affected by this first system, but were significantly increased when the second was present. This resulted in high control of M. persicae populations and the suppression of their early and late outbreaks. Our study demonstrates the potential for combined banker plants to provide long-term, sustainable control of multiple pests by their target natural enemies in complex agroecosystems.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Ana Clara Scorsetti ◽  
Sebastian Pelizza ◽  
Marilina Noelia Fogel ◽  
Florencia Vianna ◽  
Marcela Ines Schneider

Abstract Aphids (Hemiptera: Aphididae) are serious pests of crops causing direct damage by feeding and indirect by the transmission of plant viruses. The use of conventional insecticides for controlling aphids has caused different problems and insecticide resistance. Accordingly, there is more interest in alternative control methods such as biological control by natural enemies for sustainable agricultural management. Among biological control agents, entomopathogenic fungi are one of the most significant microbial pathogens of insects. Also, Coccinellidae, as a major group, is a serious natural enemy. Both larval and adult stages of Coccinellidae feed on different soft-body pests, such as aphids. Eriopis connexa (Germar) (Coleoptera: Coccinellidae) is a common species in agroecosystems of the Neotropical region where it is considered to be a potential control agent. Pathogens and arthropod natural enemies may contribute to the control of phytophagous pests; however, it is important to assess potential interactions within biological control agents that share hosts (intraguild interaction) to evaluate their combined use for pest control. Therefore, the aim of this study was to evaluate the compatibility and interaction (lethal and sublethal effects) between E. connexa and the entomopathogenic fungus Beauveria bassiana (Bals.-Criv.) Vuill. (Ascomycota: Hypocreales). Both are important biological control agents of aphids. The pathogenicity of B. bassiana against larvae, pupae and adults of the predator E. connexa was evaluated, and results showed, that B. bassiana infected the coleopteran. On the other hand, interaction between B. bassiana and the predator was evaluated through infected-prey. The effects of fungus on larvae survival were significantly different when we analyzed the accumulated survival (from first larval instar to adulthood). The daily fecundity was significantly reduced at five days compared to control group. By contrast, no significant differences were observed between the five oviposition days in the rate of hatched eggs. This study shows that despite having received a single dose of the fungus in its life cycle, the population parameters of the predator E. connexa are affected. More studies would be necessary to help identify interactions between microbes and natural enemies to increase and enhance opportunities and further develop biological pest control programs.


Sign in / Sign up

Export Citation Format

Share Document