Life Cycle Perspective for Urban Energy Use and Carbon Emissions: A Case Study of Xiamen, China

2017 ◽  
Vol 5 (1) ◽  
pp. 71-76 ◽  
Author(s):  
Fanxin Meng ◽  
Gengyuan Liu ◽  
Zhifeng Yang ◽  
Yan Hao ◽  
Yan Zhang ◽  
...  
2012 ◽  
Vol 32 (12) ◽  
pp. 3782-3794 ◽  
Author(s):  
林剑艺 LIN Jianyi ◽  
孟凡鑫 MENG Fanxin ◽  
崔胜辉 CUI Shenghui ◽  
于洋 YU Yang ◽  
赵胜男 ZHAO Shengnan

Buildings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 230
Author(s):  
Hossein Omrany ◽  
Veronica Soebarto ◽  
Jian Zuo ◽  
Ruidong Chang

This paper aims to propose a comprehensive framework for a clear description of system boundary conditions in life cycle energy assessment (LCEA) analysis in order to promote the incorporation of embodied energy impacts into building energy-efficiency regulations (BEERs). The proposed framework was developed based on an extensive review of 66 studies representing 243 case studies in over 15 countries. The framework consists of six distinctive dimensions, i.e., temporal, physical, methodological, hypothetical, spatial, and functional. These dimensions encapsulate 15 components collectively. The proposed framework possesses two key characteristics; first, its application facilitates defining the conditions of a system boundary within a transparent context. This consequently leads to increasing reliability of obtained LCEA results for decision-making purposes since any particular conditions (e.g., truncation or assumption) considered in establishing the boundaries of a system under study can be revealed. Second, the use of a framework can also provide a meaningful basis for cross comparing cases within a global context. This characteristic can further result in identifying best practices for the design of buildings with low life cycle energy use performance. Furthermore, this paper applies the proposed framework to analyse the LCEA performance of a case study in Adelaide, Australia. Thereafter, the framework is utilised to cross compare the achieved LCEA results with a case study retrieved from literature in order to demonstrate the framework’s capacity for cross comparison. The results indicate the capability of the framework for maintaining transparency in establishing a system boundary in an LCEA analysis, as well as a standardised basis for cross comparing cases. This study also offers recommendations for policy makers in the building sector to incorporate embodied energy into BEERs.


Author(s):  
Dejan R. Ostojic ◽  
Ranjan K. Bose ◽  
Holly Krambeck ◽  
Jeanette Lim ◽  
Yabei Zhang

2020 ◽  
Vol 12 (4) ◽  
pp. 1566 ◽  
Author(s):  
Yu Dong ◽  
Tongyu Qin ◽  
Siyuan Zhou ◽  
Lu Huang ◽  
Rui Bo ◽  
...  

Many stadiums will be built in China in the next few decades due to increasing public interest in physical exercise and the incentive policies issued by the government under its National Fitness Program. This paper investigates the energy saving and carbon reduction performance of timber stadiums in China in comparison with stadiums constructed using conventional building materials, based on both life cycle energy assessment (LCEA) and life cycle carbon assessment (LCCA). The authors select five representative cities in five climate zones in China as the simulation environment, simulate energy use in the operation phase of stadiums constructed from reinforced concrete (RC) and timber, and compare the RC and timber stadiums in terms of their life cycle energy consumption and carbon emissions. The LCEA results reveal that the energy saving potential afforded by timber stadiums is 11.05%, 12.14%, 8.15%, 4.61% and 4.62% lower than those of RC buildings in “severely cold,” “cold,” “hot summer, cold winter,” “hot summer, warm winter,” and “temperate” regions, respectively. The LCCA results demonstrate that the carbon emissions of timber stadiums are 15.85%, 15.86%, 18.88%, 19.22% and 22.47% lower than those of RC buildings for the regions above, respectively. This demonstrates that in China, timber stadiums have better energy conservation and carbon reduction potential than RC stadiums, based on life cycle assessment. Thus, policy makers are advised to encourage the promotion of timber stadiums in China to achieve the goal of sustainable energy development for public buildings.


Sign in / Sign up

Export Citation Format

Share Document