Quick numerical assessment of plant communities and land use change of Oti prefecture protected areas (North Togo)

2012 ◽  
Vol 7 (6) ◽  
Author(s):  
Fousseni Folega
2021 ◽  
Author(s):  
Ernest Asamoah ◽  
Linda Beaumont ◽  
Joesph M Maina

Abstract Expanding protected area networks and enhancing their capacities is currently one avenue at the forefront of efforts to conserve and restore global biodiversity. Climate and habitat loss resulting from land use interact synergistically to undermine the potential benefits of protected areas (PAs). Targeting conservation, adaptation and mitigation efforts requires an understanding of patterns of climate and land-use change within the current arrangement of PAs, and how these might change in the future. In this paper, we provide this understanding using predicted rates of temporal and spatial displacement of future climate and land use globally and within PAs. We show that ~ 47% of the world’s PAs—10.6% of which are under restrictive management—are located in regions that will likely experience both climate stress and land-use instability by 2050. The vast majority of these PAs are also distributed across moist biomes and in high conservation value regions, and fall into less-restrictive management categories. The differential impacts of combined land use and climate velocity across protected biomes indicate that climate and land-use change may have fundamentally different ecological and management consequences at multiple scales. Taken together, our findings can inform spatially adaptive natural resource management and actions to achieve sustainable development and biodiversity goals.


2020 ◽  
Vol 12 (23) ◽  
pp. 10123
Author(s):  
Dong-jin Lee ◽  
Seong Woo Jeon

This study predicts future land-use changes and the resulting changes in habitat quality, suggesting a method for establishing land-use management to ensure sustainable wildlife habitats. The conservation effects were verified in terms of wild animal habitat quality according to the designation of protected areas. Land-use change until 2050 was predicted using the Dyna-Conversion of Land Use Change and its effects (Dyna-CLUE) model for Jeju Island, Korea, and the change in the quality of roe deer habitats was predicted using the Integrated Valuation and Environmental Services and Tradeoffs (InVEST) model. Results indicate that, compared to 2030, urbanized area increased by 42.55 km2, farmland decreased by 81.36 km2, and natural area increased by 38.82 km2 by 2050. The average habitat quality on Jeju Island was predicted to decrease from 0.306 in 2030 to 0.303 in 2050. The average habitat quality ranged from 0.477 in 2030 to 0.476 in 2050 in protected areas and 0.281 in 2030 to 0.278 in 2050 outside protected areas. Habitat quality in protected areas was relatively high, and its reduction was limited. Areas with lower habitat quality need approaches such as expanding greenery and improving its quality. By establishing appropriate land-use plans by predicting habitat quality, wildlife habitats can be better maintained and protected, which is a primary goal of green infrastructure.


2008 ◽  
Vol 275 (1640) ◽  
pp. 1297-1304 ◽  
Author(s):  
Luigi Maiorano ◽  
Alessandra Falcucci ◽  
Luigi Boitani

2006 ◽  
Vol 26 (2) ◽  
pp. 153-173 ◽  
Author(s):  
Peter H. Verburg ◽  
Koen P. Overmars ◽  
Marco G.A. Huigen ◽  
Wouter T. de Groot ◽  
A. Veldkamp

2007 ◽  
Vol 17 (4) ◽  
pp. 1031-1038 ◽  
Author(s):  
Ruth DeFries ◽  
Andrew Hansen ◽  
B. L. Turner ◽  
Robin Reid ◽  
Jianguo Liu

Ecologies ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 203-213
Author(s):  
Ram C. Sharma

Vegetation mapping and monitoring is important as the composition and distribution of vegetation has been greatly influenced by land use change and the interaction of land use change and climate change. The purpose of vegetation mapping is to discover the extent and distribution of plant communities within a geographical area of interest. The paper introduces the Genus-Physiognomy-Ecosystem (GPE) system for the organization of plant communities from the perspective of satellite remote sensing. It was conceived for broadscale operational vegetation mapping by organizing plant communities according to shared genus and physiognomy/ecosystem inferences, and it offers an intermediate level between the physiognomy/ecosystem and dominant species for the organization of plant communities. A machine learning and cross-validation approach was employed by utilizing multi-temporal Landsat 8 satellite images on a regional scale for the classification of plant communities at three hierarchical levels: (i) physiognomy, (ii) GPE, and (iii) dominant species. The classification at the dominant species level showed many misclassifications and undermined its application for broadscale operational mapping, whereas the GPE system was able to lessen the complexities associated with the dominant species level classification while still being capable of distinguishing a wider variety of plant communities. The GPE system therefore provides an easy-to-understand approach for the operational mapping of plant communities, particularly on a broad scale.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 408
Author(s):  
César Benavidez-Silva ◽  
Magdalena Jensen ◽  
Patricio Pliscoff

Chile is a country that depends on the extraction and export of its natural resources. This phenomenon has exacerbated different processes of transformation and disturbance of natural and human ecosystems. Land use change has become a key factor for the transformation of ecosystems, causing consequences for biodiversity conservation. In this study, current and future (2030, 2050 and 2080) land use categories were evaluated. Land use projections were analysed together with models of ecosystem distribution in Chile under different climate scenarios, to finally analyse different dynamics of land use change within the protected areas system. In all the scenarios evaluated, land use projections showed an increase in the areas of industrial forest plantations and urban areas and a decrease in natural and agricultural areas could be expected. In relation to ecosystem modeling, vegetational formations located in the center and south of the country could be expected to decrease, while vegetational formations in the north and center of the country could extend their surface area. Inside Chile’s protected area network, anthropic disturbances are currently undergoing expansion, which could have consequences for ecosystems and protected areas located in the central and central–south zones of Chile.


2020 ◽  
Author(s):  
K Varun ◽  
Sutirtha Dutta

AbstractThe Indian Thar desert has lost much of its grasslands over the last few decades, mainly due to land-use change from pastoralism to agriculture. Expanding croplands and intensifying grazing pressures are popularly hypothesized to be major drivers of biodiversity loss in the region. Our study aims to investigate the effects of contemporary land-use change on bird communities of the Western Thar Desert.We surveyed 58 randomly laid line transects in a c2000 sq.km study area, to quantify parameters of bird community structure in three predominant land-use types viz. protected grasslands, rangelands, and non-irrigated croplands. Fieldwork for the study was conducted in the dry season (winter and summer) between December 2018 and April 2019.During winter, overall bird richness and abundance were highest in protected grasslands followed by non-irrigated croplands and rangelands. Protected grasslands also had a higher abundance of diet and habitat specialists. Compared to protected grasslands, density was lower in non-irrigated croplands and rangelands for 35% and 10% of species, respectively. A majority of the negatively affected species were insectivorous grassland specialists.Contrary to the pattern in winter, overall bird richness, abundance, community composition, and guild structure in summer were similar across three land-use types. Only one of the 17 analysed species had lower density in modified land-use types.Overall, protected grassland was the best habitat for birds and was specifically important for specialists, particularly during the winter. Rangelands and fallow croplands sustained most generalists at comparable densities but had severe negative impacts on specialists.Synthesis and application: Our results point out that low-intensity agro-pastoral land-uses can supplement, but not replace, protected areas in conservation of Thar desert’s avifaunal diversity. Our results are consistent with the idea of managing dryland habitats as agro-grassland mosaics with embedded protected areas, in order to reconcile human needs and biodiversity conservation at a landscape scale.


Sign in / Sign up

Export Citation Format

Share Document