Ecologies
Latest Publications


TOTAL DOCUMENTS

25
(FIVE YEARS 25)

H-INDEX

0
(FIVE YEARS 0)

Published By MDPI AG

2673-4133

Ecologies ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 380-396
Author(s):  
Mare Addis Desta ◽  
Gete Zeleke ◽  
William A. Payne ◽  
Wubneh Belete Abebe

More than half of the world’s population consumes rice. Recently, the area sown with modern rice varieties has expanded, and the use of chemical fertilizers and pesticides has increased in various countries. Wetland hydrology is also influenced by chemical and physical characteristics. Hence, this research focused on temporal and spatial changes in crop patterns, input usage, and hydrology in the Ethiopian Fogera floodplain, with the following objectives: (a) What are the spatial and temporal trends in crop production patterns? (b) What input changes have occurred to produce rice and other crops? (c) What hydrological changes have occurred in the area with intensification of production systems? Primary data were gathered through a questionnaire, focus group discussions, interviews, and field observations. Secondary data were obtained from Landsat imageries, the SWAT model, water flow measurements, and normalized difference vegetation index (NDVI). NDVI results indicated that the area cultivated for rice is increasing while the area of other crops is decreasing. Agricultural inputs are used in rice systems but were not used before the introduction of rice. Recession farming activities have also diminished wetland areas. Water flow showed a decrease, whereas Nitrogen and Phosphorus showed an increase with Pearson’s correlation values −0.069 and −0.072, respectively. Flow of water was negatively correlated with N and P water concentration, whereas N and P contents were positively correlated. In conclusion, growth of intensive rice systems has had negative environmental consequences on wetland ecology. Therefore, policies to regulate and manage wetland uses are recommended.


Ecologies ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 366-379
Author(s):  
Ruchira Gangahagedara ◽  
Shyamantha Subasinghe ◽  
Madhushan Lankathilake ◽  
Wasantha Athukorala ◽  
Isurun Gamage

The study of ecosystem services (ES) is becoming increasingly popular, as it plays an important role in human wellbeing, economic growth, and livelihoods. The primary goal of this research is to investigate the global trend in ES research using a rigorous systematic review of highly cited articles. The articles for this study were extracted from Science Citation Index Expanded (SCI-E), Emerging Sources Citation Index (ESCI), and Social Sciences Citation Index (SSCI) databases of Web of Science Core Collection (WoSCC) covering the period from 2000 to 2020. This study was limited to SCI-E, ESCI, and SSCI databases of the Web of Science. The term “ecosystem service/s” has been used as a research term to filter the study sample and eliminate other databases from the analysis. A citation level equal to or greater than 200 was used to further filtration of articles. This query could restrict to 128 articles that are highly cited in the selected period. Bibliometric analysis results show that, according to the author’s keywords, the “ecosystem service/s” keyword is highly connected to the “biodiversity”, “valuation”, “marine spatial planning”, and “conservation planning”. The U.S.A., Canada, China, France, and Australia are the leading countries in the cumulative number of highly cited articles and networks of co-authors. The U.S.A. is a strong contributor to ES research with China, Canada, and France. The most productive universities linked to the United States were the University of Minnesota, the University of California-Santa Barbara (UC Santa Barbara), and the Chinese Academy of Science. The most significant and compelling author is Halpern S Benjamin, who represents UC Santa Barbara. He has earned international recognition for a model he developed to analyze global data sets of anthropogenic drivers of ecological change in marine environments. The most accessed and studied fields in the ES are terrestrial, urban, and marine environments.


Ecologies ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 345-365
Author(s):  
Daniel Patón

(1) Background: Desertification is one of the most important environmental impacts around the world. In the semiarid grassland of North of Chile, overgrazing has deep effects on arid lands and consequently on its economy and social development. It is necessary to conduct very detailed studies to determine how the climate, the botanical composition and the grazing system affects this process; (2) Methods: In this paper, we have determined the effect on arid grasslands of three goat managements: exclusions, continuous and deferred grazing on forage biomass, richness, Berger–Parker’s dominance and Shannon’s diversity. This study was developed in Las Cardas Range Station (CEALC) of the University of Chile in the Coquimbo region. The effect of annual and seasonal rainfall on biomass, diversity, richness and dominance parameters was determined; (3) Results: Allochthonous, endemic and native species showed significant changes both for seasonal and annual precipitation. In contrast, the grazing system only affected dominance and biomass of native and endemic species. Deferred grazing was the only management system that increased overall biomass productivity, especially on the best forage plant species. Exclusions showed a positive influence on more endangered species, which were the most vulnerable to goat overgrazing; (4) Conclusions: In consequence, we proposed a network of areas under deferred grazing combined with exclusions. This strategy can increase simultaneously forage productivity, grassland conservation and preservation of associated resources as hunting and wildlife tourism. Moreover, this strategy of range management will allow the sustainability of community of farmers in one of the poorest and most desertified areas in South America.


Ecologies ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 332-344
Author(s):  
Xinfeng Zhao ◽  
Tao Lin ◽  
Hailiang Xu ◽  
Ai Shajiang Aili ◽  
Wanyu Zhao ◽  
...  

To examine the variation in water and vegetation coverage areas, the groundwater level and plant diversity in the terminal lake of the Tarim River, northwest China, both the monitoring data of a field survey consisting of surface samples and remote sensing data for 20 years (2000–2019) were analyzed by using field survey and indoor remote sensing methods. The results showed that (1): from 2000 to 2019, water and vegetation areas increased significantly, especially the trend of vegetation areas becoming more significant, with an average annual increase of 13.9 km2/a; (2): the plant diversity increased first and then decreased; the species richness and Pielou index in the study area were 9.0 and 0.80 in 2005, but only 2.00 and 0.08 in 2000, respectively; species composition tends to be simplified; (3): with the increase in the lake area, the groundwater level showed an up-lifted trend; the correlation between the two was significant, but there was a lag in the response of the groundwater level.


Ecologies ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 313-331
Author(s):  
Haijiang Yang ◽  
Xiaohua Gou ◽  
Dingcai Yin

Climate change is having a significant impact on the global ecosystem and is likely to become increasingly important as this phenomenon intensifies. Numerous studies in climate change impacts on biodiversity, ecosystems, and ecosystem services in China have been published in recent decades. However, a comprehensive review of the topic is needed to provide an improved understanding of the history and driving mechanisms of environmental changes within the region. Here we review the evidence for changes in climate and the peer-reviewed literature that assesses climate change impacts on biodiversity, ecosystem, and ecosystem services at a China scale. Our main conclusions are as follows. (1) Most of the evidence shows that climate change (the increasing extreme events) is affecting the change of productivity, species interactions, and biological invasions, especially in the agro-pastoral transition zone and fragile ecological area in Northern China. (2) The individuals and populations respond to climate change through changes in behavior, functions, and geographic scope. (3) The impact of climate change on most types of services (provisioning, regulating, supporting, and cultural) in China is mainly negative and brings threats and challenges to human well-being and natural resource management, therefore, requiring costly societal adjustments. In general, although great progress has been made, the management strategies still need to be further improved. Integrating climate change into ecosystem services assessment and natural resource management is still a major challenge. Moving forward, it is necessary to evaluate and research the effectiveness of typical demonstration cases, which will contribute to better scientific management of natural resources in China and the world.


Ecologies ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 285-304
Author(s):  
Pierre Olivier St Flour ◽  
Chandradeo Bokhoree

Over the past years, an increasing number of initiatives was considered to address emerging global sustainability issues. Sustainability assessment tools were the most commonly applied methodologies towards measuring sustainability performance. There are a number of assessment tools and techniques for sustainable development. This article aims at identifying the various sustainability assessment tools at country level taking into consideration the integration of environmental, economic, and social dimensions. The target of this paper is to compare the various sustainability measurement techniques and their characteristics using evaluation criteria. The outcome of this analysis is used to direct and clarify researchers and practitioners on sustainability assessment at country level, more specifically in developing countries. The focus of the paper rests on the Brundtland Report definition of sustainable development. The work was carried out using a bibliometric analysis approach based on Web of Science platform from the period 2000 to 2020. There was tremendous works which were conducted on sustainability assessment during the last two decades. The comparative analyses show the research gap among the various tools with respect to the criteria they satisfied. The research discussion suggests that a sustainability assessment framework for Small Island Developing States (SIDS) is identified as a future research direction.


Ecologies ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 268-284
Author(s):  
Muthulingam Udayakumar ◽  
Thangavel Sekar

A plant functional trait study was conducted to know the existing relationship between important leaf traits namely, specific leaf area (SLA), leaf dry matter content (LDMC), and leaf life span (LL) in tropical dry evergreen forest (TDEFs) of Peninsular India. Widely accepted methodologies were employed to record functional traits. The relationships between SLA and LDMC, LDMC and LL, and SLA and LL were measured. Pearson’s coefficient of correlation showed a significant negative relationship between SLA and LDMC, and SLA and LL, whereas a significant positive relationship was prevailed between LDMC and LL. The mean trait values (SLA, LDMC, and LL) of evergreens varied significantly from deciduous species. SLA had a closer relationship with LDMC than LL. Similarly, LL had a closer relationship with SLA than LDMC. Species with evergreen leaf habits dominated forest sites under study. Evergreen species dominate the study area with a high evergreen-deciduous ratio of 5.34:1. The S strategy score of trees indicated a relatively higher biomass allocation to persistent tissues. TDEFs occur in low elevation, semiarid environment, but with the combination of oligotrophic habitat, high temperature and longer dry season these forests were flourishing as a unique evergreen ecosystem in the drier environment. The relationships found between leaf traits were in concurrence with earlier findings. Trees of TDEFs survive on the poor-nutrient habitat with a low SLA, high LDMC, and LL. This study adds baseline data on key leaf traits to plant functional trait database of India.


Ecologies ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 248-267
Author(s):  
Asvina Sunassee ◽  
Chandradeo Bokhoree

Environmental art education is gaining importance in schools as arts education begins to acquire a more significant role in environmental education. This emerging field of study is an interdisciplinary endeavor that is centered on the different fields of environmental education and visual art education and provides a means of making students aware of environmental issues through environmental art education. It has been suggested that students get into a relationship with nature prior to the request to conserve the environment in order to be nature connected. This abstract focuses on teaching and learning through the arts, a pedagogical way in which students discuss the challenging aspects of environmental issues. The aim of this study is to make students act like protectors of their environment through an eco-art place-based curriculum. This paper’s pedagogies will provide educators with a framework for developing environmental art education lessons and curricula. This experimental study has been planned to gather data from interviews and observation of students and by making the students participate in nature-related activities. The findings show that students prefer to let go of their fascination with formulating better ecological perspectives. On the positive side, a few students went through some frustration during the program and the activities. Students have given positive feedback on the program in positive terms, such as “fun”, “interesting”, and “cool”, to express their experience gained through the class activities.


Ecologies ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 214-247
Author(s):  
Asvina Sunassee ◽  
Chandradeo Bokhoree ◽  
Andrew Patrizio

The existing state of the world climate creates the need for an educational programme that incorporates effective proposals for the environment that can be practically implemented. The present environmental education literature has changed due to new study paradigms. Understanding how students relate to nature, how their personal beliefs and behaviours are influenced, and how their actions are affected can provide an increased understanding of how they can contribute meaningfully to global objectives. This paper aims to analyse educational research papers published in the area of environmental art education in order to find the factor with the greatest effect and illuminate how they can help to improve the measures implemented. This study paper (i) focuses on students’ engagement with an environment curriculum; (ii) demonstrates the need for action related to the environment; (iii) encourages critical thinking; and (iv) demonstrates students’ independent thinking and rational decision making. The findings show that such research can help to improve environmental art education based on action and take future research challenges into account.


Ecologies ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 203-213
Author(s):  
Ram C. Sharma

Vegetation mapping and monitoring is important as the composition and distribution of vegetation has been greatly influenced by land use change and the interaction of land use change and climate change. The purpose of vegetation mapping is to discover the extent and distribution of plant communities within a geographical area of interest. The paper introduces the Genus-Physiognomy-Ecosystem (GPE) system for the organization of plant communities from the perspective of satellite remote sensing. It was conceived for broadscale operational vegetation mapping by organizing plant communities according to shared genus and physiognomy/ecosystem inferences, and it offers an intermediate level between the physiognomy/ecosystem and dominant species for the organization of plant communities. A machine learning and cross-validation approach was employed by utilizing multi-temporal Landsat 8 satellite images on a regional scale for the classification of plant communities at three hierarchical levels: (i) physiognomy, (ii) GPE, and (iii) dominant species. The classification at the dominant species level showed many misclassifications and undermined its application for broadscale operational mapping, whereas the GPE system was able to lessen the complexities associated with the dominant species level classification while still being capable of distinguishing a wider variety of plant communities. The GPE system therefore provides an easy-to-understand approach for the operational mapping of plant communities, particularly on a broad scale.


Sign in / Sign up

Export Citation Format

Share Document