scholarly journals Phytoremediation of heavy metal contaminated soil using different plant species

2013 ◽  
Vol 12 (43) ◽  
pp. 6185-6192 ◽  
Author(s):  
J Coupe Stephen ◽  
Sallami Khaled ◽  
Ganjian Eshmaiel
Author(s):  
Jacek Antonkiewicz ◽  
Czesława Jasiewicz ◽  
Pavel Ryant

The studies conducted from 1997 to 1999 in a vegetation hall were performed as a pot experiment on ordinary silt soil. Jerusalem artichoke, maize, Sida hermaphrodita Rusby, amaranth and hemp were used as indicator plants. The results confirmed, great diversification of the element contents which depends not only on the species but also on the part of individual plants. Analysis of the data revealed also another dependence: increased concentration of heavy metals in the soil corresponded to a higher content of heavy metals in the plants. Significant differences in this respect were observed for the plant species grown in unpolluted or differently contaminated soil.


2021 ◽  
Vol 14 (13) ◽  
Author(s):  
Fatemeh Mohebzadeh ◽  
Babak Motesharezadeh ◽  
Mohammad Jafari ◽  
Salman Zare ◽  
Maryam Saffari Aman

2020 ◽  
Vol 9 (1) ◽  
pp. 736-750
Author(s):  
Xilu Chen ◽  
Xiaomin Li ◽  
Dandan Xu ◽  
Weichun Yang ◽  
Shaoyuan Bai

AbstractChromium (Cr) is a common toxic heavy metal that is widely used in all kinds of industries, causing a series of environmental problems. Nanoscale zero- valent iron (nZVI) is considered to be an ideal remediation material for contaminated soil, especially for heavy metal pollutants. As a material of low toxicity and good activity, nZVI has been widely applied in the in situ remediation of soil hexavalent chromium (Cr(vi)) with mobility and toxicity in recent years. In this paper, some current technologies for the preparation of nZVI are summarized and the remediation mechanism of Cr(vi)-contaminated soil is proposed. Five classified modified nZVI materials are introduced and their remediation processes in Cr(vi)-contaminated soil are summarized. Key factors affecting the remediation of Cr(vi)-contaminated soil by nZVI are studied. Interaction mechanisms between nZVI-based materials and Cr(vi) are explored. This study provides a comprehensive review of the nZVI materials for the remediation of Cr(vi)-contaminated soil, which is conducive to reducing soil pollution.


2011 ◽  
Vol 414 ◽  
pp. 93-98
Author(s):  
An Ping Liu ◽  
Xiao Nan Sun ◽  
Fang Yang ◽  
Xing Xing Yao

This paper describes the model of heavy metal-Cu contaminated soil remediation standard value based on risk assessment. In the Cu contamination risk assessment model, the main exposure methods are oral ingestion and inhalation through breathing, which not only simplifies the calculation but also make people get a clearer understanding of the way of Cu contamination. We get the simplified formula, calculate and discuss Cu contaminated soil remediation target value in specific parameters to provide reference and basis for the remediation of Cu contaminated soil.


Sign in / Sign up

Export Citation Format

Share Document