scholarly journals Application of nanoscale zero-valent iron in hexavalent chromium-contaminated soil: A review

2020 ◽  
Vol 9 (1) ◽  
pp. 736-750
Author(s):  
Xilu Chen ◽  
Xiaomin Li ◽  
Dandan Xu ◽  
Weichun Yang ◽  
Shaoyuan Bai

AbstractChromium (Cr) is a common toxic heavy metal that is widely used in all kinds of industries, causing a series of environmental problems. Nanoscale zero- valent iron (nZVI) is considered to be an ideal remediation material for contaminated soil, especially for heavy metal pollutants. As a material of low toxicity and good activity, nZVI has been widely applied in the in situ remediation of soil hexavalent chromium (Cr(vi)) with mobility and toxicity in recent years. In this paper, some current technologies for the preparation of nZVI are summarized and the remediation mechanism of Cr(vi)-contaminated soil is proposed. Five classified modified nZVI materials are introduced and their remediation processes in Cr(vi)-contaminated soil are summarized. Key factors affecting the remediation of Cr(vi)-contaminated soil by nZVI are studied. Interaction mechanisms between nZVI-based materials and Cr(vi) are explored. This study provides a comprehensive review of the nZVI materials for the remediation of Cr(vi)-contaminated soil, which is conducive to reducing soil pollution.

2017 ◽  
Vol 9 (6) ◽  
pp. 1031-1037 ◽  
Author(s):  
Jingtao Liu ◽  
Yu Ding ◽  
Lifei Ji ◽  
Xin Zhang ◽  
Fengchun Yang ◽  
...  

Hexavalent chromium (Cr(vi)) is one of the most toxic heavy metal pollutants in groundwater, and thus the detection of Cr(vi) with high sensitivity, accuracy, and simplicity and low cost is of great importance.


2021 ◽  
Vol 1 (1) ◽  
pp. 18-25
Author(s):  
Muhammad Noor Hazwan Jusoh ◽  
Chi Nam Yap ◽  
Tony Hadibarata ◽  
Hisyam Jusoh ◽  
Mohamed Zuhaili Mohamed Najib

Heavy metal (loids) in wastewater persists as a contagious and non-biodegradable environmental pollutant. With the ever rising of nanotechnologies in various field, there is a mass flux of heavy metal (loid)s being transmitted in many water sediments includes wastewater and rivers in which difficult to eliminate through conventional treatment processes. The introduction and development of nanomaterials have been increasingly utilized. Their high absorption capacity and unique properties in eliminating heavy metal pollutants and other nano pollutants have been extensively used in the remediation of inorganic pollutants. This review study illustrates the different types of nanomaterials that are utilized in various treatment process such as nano zero-valent iron (nZVI), carbon nanotubes and titanium dioxide nanoparticles (TiO2NPs). The mechanism of each nanomaterial and also its advantages and disadvantages are being portrayed. The identified factors affecting their efficiency in eliminating heavy metal and other inorganic pollutants are briefly described.


Author(s):  
Danlian Huang ◽  
Yunhe Yang ◽  
Rui Deng ◽  
Xiaomin Gong ◽  
Wei Zhou ◽  
...  

In this study, the role of exogenous root exudates and microorganisms was investigated in the application of modified nanoscale zero-valent iron (nZVI) for the remediation of cadmium (Cd)-contaminated soil. In this experiment, citric acid (CA) was used to simulate root exudates, which were then added to water and soil to simulate the pore water and rhizosphere environment. In detail, the experiment in water demonstrated that low concentration of CA facilitated Cd removal by nZVI, while the high concentration achieved the opposite. Among them, CA can promote the adsorption of Cd not only by direct complexation with heavy metal ions, but also by indirect effect to promote the production of iron hydroxyl oxides which has excellent heavy metal adsorption properties. Additionally, the H+ dissociated from CA posed a great influence on Cd removal. The situation in soil was similar to that in water, where low concentrations of CA contributed to the immobilization of Cd by nZVI, while high concentrations promoted the desorption of Cd and the generation of CA–Cd complexes which facilitated the uptake of Cd by plants. As the reaction progressed, the soil pH and cation exchange capacity (CEC) increased, while organic matter (OM) decreased. Meanwhile, the soil microbial community structure and diversity were investigated by high-throughput sequencing after incubation with CA and nZVI. It was found that a high concentration of CA was not conducive to the growth of microorganisms, while CMC had the effect of alleviating the biological toxicity of nZVI.


2018 ◽  
Vol 77 (6) ◽  
pp. 1622-1631 ◽  
Author(s):  
Runyuan Zhang ◽  
Nuanqin Zhang ◽  
Zhanqiang Fang

Abstract In this study, the remediation experiments were performed outdoors in natural conditions. Carboxymethyl cellulose (CMC)-stabilized nanoscale zero-valent iron (CMC-nZVI), biochar (BC) and CMC-stabilized nanoscale zero-valent iron composited with biochar (CMC-nZVI/BC) were synthesized and investigated for their effect on the in situ remediation of hexavalent chromium [Cr(VI)] contaminated soil and the concentration of available iron was tested after the remediation, compared with the untreated soil. The results of toxicity characteristic leaching procedure (TCLP) test showed that CMC-nZVI and CMC-nZVI/BC used as remediation materials could obviously improve the remediation rate of Cr contaminated soil and when the ratio of CMC-nZVI to Fe0 was 2.5 g/Kg, the leachability of Cr(VI) and Crtotal can be reduced by 100% and 95.8% simultaneously. Moreover, sequential extraction procedure (SEP) showed that most exchangeable Cr converted to carbonate-bound and Fe-Mn oxides-bound, reducing the availability and leachability of Cr in the soil.


2021 ◽  
Vol 290 ◽  
pp. 01022
Author(s):  
Qiuyu Zhao ◽  
Siyi Wang ◽  
Jianjun Wang

Over the decades, the application of heavy metals and the expansion of civilization resulted in severe pollutions in aqueous solutions. The poor degradation of toxic heavy metal contaminants in hydrosphere undoubtedly posed a huge threat to environmental safety and biological health. In this review, as most common heavy metal pollutants, arsenium (As), chromium (Cr), mercury (Hg), lead (Pb), and strontium (Sr) were introduced in detail. The chemical behaviours, chemical status, biological toxicity, and migration of mentioned contaminants were summarized. This work highlighted and reviewed the basic information of five heavy metal pollutants, which provided a new direction of toxic heavy metal ion remediation.


Sign in / Sign up

Export Citation Format

Share Document