scholarly journals The use of heavy metal accumulating plants for detoxication of chemically polluted soils

Author(s):  
Jacek Antonkiewicz ◽  
Czesława Jasiewicz ◽  
Pavel Ryant

The studies conducted from 1997 to 1999 in a vegetation hall were performed as a pot experiment on ordinary silt soil. Jerusalem artichoke, maize, Sida hermaphrodita Rusby, amaranth and hemp were used as indicator plants. The results confirmed, great diversification of the element contents which depends not only on the species but also on the part of individual plants. Analysis of the data revealed also another dependence: increased concentration of heavy metals in the soil corresponded to a higher content of heavy metals in the plants. Significant differences in this respect were observed for the plant species grown in unpolluted or differently contaminated soil.

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1057
Author(s):  
Ehab Azab ◽  
Ahmad K. Hegazy

Heavy metal-contaminated soil constitutes many environmental concerns. The toxic nature of heavy metals poses serious threats to human health and the ecosystem. Decontamination of the polluted soil by phytoremediation is of fundamental importance. Vegetation is an appealing and cost-effective green technology for the large-scale phytoremediation of polluted soils. In this paper, a greenhouse experiment was carried out to test the potential of Rhazya stricta as a heavy metal phytoremediator in polluted soil. Plants were grown for three months in pots filled with soils treated with the heavy metals Cd, Pb, Cu, and Zn at rates of 10, 50, and 100 mg/kg. The bioaccumulation factor (BCF) and translocation factor (TF) were calculated to detect the ability of R. stricta to accumulate and transfer heavy metals from soil to plant organs. The results showed that under increasing levels of soil pollution, the bioconcentration of Cd and Zn heavy metals showed the highest values in plant roots followed by leaves, whereas in the case of Pb and Cu, roots showed the highest values followed by stems. Heavy metals accumulation was higher in roots than in stems and leaves. The BCF of Zn reached the highest values in roots and stems for 10 mg/kg soil treatment, followed by the BCFs of Cd, Cu, and Pb. The TF for the different heavy metal pollutants’ concentrations was less than unity, suggesting that the plants remediate pollutants by phytostabilization. The TF values ranged from higher to lower were in the order Zn > Cu > Cd > Pb. The rapid growth of R. stricta and its tolerance of heavy metals, as well as its ability to absorb and accumulate metals within the plant, recommends its use in the phytoremediation of slightly polluted soils in arid lands by limiting the heavy metals transport.


2019 ◽  
Vol 42 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Sadia Qayyum ◽  
Ke Meng ◽  
Sidra Pervez ◽  
Faiza Nawaz ◽  
Changsheng Peng

Abstract Soil contamination with heavy metal content is a growing concern throughout the world as a result of industrial, mining, agricultural and domestic activities. Fungi are the most common and efficient group of heavy metal resistant microbe family which have potential for metal bioleaching. The use of filamentous fungi in bioleaching of heavy metals from contaminated soil has been developed recently. The current study intends to isolate a strain with the ability to degrade the pH value of the liquid medium. Identification results based on morphological and molecular biological analysis gave a 98% match to Aspergillus flavus. Batch experiments were conducted to select the optimal conditions for bioleaching process which indicated that 130 mg/ L sucrose, neutral pH and temperature of 30°C were more suitable during 15-day bioleaching experiments using A. flavus. In one-step bioleaching, the bioleaching efficiencies were 18.16% for Pb, 39.77% for Cd and 58.22% for Zn+2, while two-step bioleaching showed efficiencies of 16.91% for Pb, 49.66% for Cd and 65.73% for Zn+2. Overall, this study indicates that bioleaching of heavy metals in contaminated soil using A. flavus has the potential for contaminated soil remediation.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1608
Author(s):  
Aslihan Esringü ◽  
Metin Turan ◽  
Asli Cangönül

Heavy metal pollution is among the important environmental problems in the world. Many techniques have already been used to remove the heavy metals such as lead (Pb) and cadmium (Cd). Among them, the phytoremediation method is an environmentally friendly and green technology. This study was carried out to determine the efficiency of fulvic acid (FA) application in removing Pb and Cd from polluted soil using Tagetes eracta L. and Zinnia elegans Jacq. ornamental plants. The results indicated that, FA application, number of flower per plants, and plant fresh weight of Tagetes eracta plants and Zinnia elegans plants increased 187.5%, 104.5% and 155.5%, 57.7%, respectively with application of 7000 mg L−1 FA at 100 mg kg−1 Pb pollution condition, whereas 42.85%, 16.5%, and 44.4–36.1% with application of 7000 mg L−1 FA at 30 mg kg±1 Cd pollution condition, respectively. With the FA application in the Zinnia elegans plant, the root part has accumulated 51.53% more Pb than the shoot part. For Cd, the shoot part accumulated 35.33% more Cd than the root. The effect of FA application on superoxide dismutase (SOD), peroxidase (POD) and, catalase (CAT) of the Tagetes eracta were decreased as 32.7%, 33.1%, and 35.1% for Pb, 21.2%, 25.1%, and 26,1%, for Cd, and 15.1%, 22.7%, and 37.7% for Pb, and 7.55%, 18.0%, and 18.8% for Cd were in Zinnia elegans respectively. In conclusion, Tagetes eracta and Zinnia elegans can not be recommended for remediation of Pb and Cd polluted area, but FA can be recommended for Pb and Cd stabilization in polluted soil.


2012 ◽  
Vol 14 (1) ◽  
pp. 52
Author(s):  
Reginawanti Hindersah ◽  
Rija Sudirja

Azotobacter might be used as biological agents in bioremediation of heavy metal-contaminated soil since this rhizobacteria produceexopolysachharides (EPS) that mobilize soil heavy metals, and phytohormones that regulate root growth. So that heavy metal uptake bythe roots could be increased. The objective of this research was to verify the stability of EPS and phytohormones in Azotobacter liquidinoculants during four months in different temperature storage. Liquid inoculants has been produced in EPS-induced media and stored in200C and room temperature (24-270C) during four months. The results showed that the better temperature storage was room temperatureinstead of 20 0C since pH, total N, and EPS and phytohormones content was relatively stable during storage.


2018 ◽  
Vol 1 (3) ◽  
Author(s):  
T Y TEH ◽  
Min-Hao Wu ◽  
Kf Chen ◽  
Yp Peng

This project is carried out to assess the remediation effect on soil contaminated by molybdenum (Mo), one of heavy metals, through the use of an energy crop, sunflowers. This project explores the integration of phytohormones and chelates in the phytoremediation of soils contaminated by heavy metals, and further assesses the operational measures of remedying heavy-metal contaminated soil with sunflowers, in addition to the related environmental factors. Then the project explores phytohormones and heavy metals on the growth scenario explants (explants morphological analysis) through the experiment. The results indicate that GA3 can increase the growth rate of the plants. The average incremental growth of the heavy-metal-added-only group is 21.0 cm; of the GA3-added group it is 21.9 cm; of the EDDS-added group, it is 20.3 cm; of the GA3+ EDDS-added group, it is 21.7 cm. Compared with the conventional methods of phytoremediation, these integrated measures can actually spur the growth of plants. 


2012 ◽  
Vol 37 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Habib Mohammad Naser ◽  
Sarmin Sultana ◽  
Rebeca Gomes ◽  
Shamsun Noor

Levels of lead, cadmium, and nickel in roadside soils and vegetables along a  major highway in Gazipur, Bangladesh were investigated. Soil samples were  collected at distances of 0, 50, 100, and 1000 m (meter) from the road. The  concentrations of lead (Pb) and nickel (Ni) in soil and vegetables (bottle gourd  and pumpkin) decreased with distance from the road, indicating their relation to  traffic and automotive emissions. The concentration of cadmium (Cd) was found  to be independent of distance from road. There were significant differences in  the concentrations of lead, cadmium, and nickel for different plant species and  soils at various distances. The heavy metals contents both in the soils and  vegetables for every distance from the road was found in the order  nickel>lead>cadmium. DOI: http://dx.doi.org/10.3329/bjar.v37i1.11170 Bangladesh J. Agril. Res. 37(1): 9-17, March 2012


2014 ◽  
Vol 587-589 ◽  
pp. 816-819 ◽  
Author(s):  
Ning Chen ◽  
Su Chen ◽  
Lei Chao ◽  
Li Na Sun ◽  
Dong Mei Zheng ◽  
...  

In the recent years, antibiotics and heavy metals have become common pollutants in soil. Plant-microbial remediation is promising for the management of antibiotics and heavy metals pollution in soil. This paper talks about the mechanization of plant-microbial remediation, finds the advantages and disadvantages about plant-microbial technology, summarizes the method of selection of the plant and microbial, influential factors, and discusses the future research priorities of plant-microbial remediation.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Chen-Yao Chu ◽  
Tzu-Hsing Ko

Heavy metal-contaminated soils were leached with various acid reagents, and a series of treatments was assessed to understand soil fertility after acid leaching. Aqua regia digestion and a five-step sequential extraction procedure were applied to determine heavy metal distribution. The average total concentrations of Zn, Cd, Cu, and Pb for contaminated soil were 1334, 25, 263, and 525 mg·kg−1 based on the ICP/AES quantitative analysis. Other than Pb extracted by H2SO4, over 50% removal efficiency of other heavy metals was achieved. A five-step sequential extraction revealed that the bound-to-carbonate and bound-to-Fe-Mn oxides were the major forms of the heavy metals in the soil. The addition of organic manure considerably promoted soil fertility and increased soil pH after acid leaching. Seed germination experiments demonstrated that after acid leaching, the soil distinctly inhibited plant growth and the addition of manure enhanced seed germination rate from 35% to 84%. Furthermore, the procedure of soil turnover after acid leaching and manure addition greatly increased seed germination rate by 61% and shortened the initial germination time. Seed germination in untreated soil was superior to that in acid-leached soil, illustrating that the phytotoxic effect of acid leaching is more serious than that of heavy metals.


Sign in / Sign up

Export Citation Format

Share Document