heavy metal pollutants
Recently Published Documents


TOTAL DOCUMENTS

179
(FIVE YEARS 85)

H-INDEX

20
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Dongdong Guo ◽  
Yong Wan ◽  
Jiangshan Li ◽  
Ruiqi Liu ◽  
Lei Liu ◽  
...  

Abstract Modified bentonites for anti–seepage system application has been attracting global attentions. At the same time, the performances of modified bentonite containing retardation barrier exposed to organic–heavy metal pollutants have not been fully reported. In this study, the adsorption performances (one of the key evaluation indicators of retardation barrier) of nine kinds of commonly used modified bentonites on multiple contaminants were comparatively investigated. The X–ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analyses were also performed to unravel the adsorption mechanisms. Results show that the adsorption of modified bentonites on phenol and Pb(II) follows the order of SB–16 > PVA > CTAB > APAM > CTAB + PAC > PAC > CPAM > CTAB + PAC > CTAB + CPAM + APAM. Among all the samples, the bentonite modified with SB–16 showed the highest adsorption capacities for phenol and Pb(II). The surfactant molecules inserted in the interlayer space of montmorillonite increase the substrate spacing, which changes the structural properties of the bentonite from hydrophilic to hydrophobic and increases the adsorption of organic contaminants. On the other hand, the polymer has functional groups such as hydroxyl and carboxyl that can form a spatial three–dimensional cross–linking structure on the bentonite surface, providing more adsorption sites for heavy metal ions. These findings indicate the potential industrial applications of modified bentonite in a contaminant barrier system.


2022 ◽  
pp. 363-387
Author(s):  
V. Madhavi ◽  
A. Vijaya Bhaskar Reddy ◽  
G. Madhavi

2021 ◽  
Vol 40 ◽  
Author(s):  
Jing Lin ◽  
A.B.M. Sadique Rayhan ◽  
Yun Wang ◽  
Zhai Wu ◽  
Yan Lin ◽  
...  

Concentrations of heavy metals (Cu, Pb, Zn, Cd and Cr) in surface soils and sediments collected in 2008 from 37 sampling sites in the Fildes Peninsula and Ardley Island were detected by atomic absorption spectrometry. The total contents of Cu, Pb, Zn, Cd and Cr ranged, respectively, from 61.36 to 562.2 mg/kg, 0.52 to 1.95 mg/kg, 54.61 to 577.9 mg/kg, 0.04 to 3.76 mg/kg and 6.83 to 25.9 mg/kg in soils and from 58.55 to 498.3 mg/kg, 0.60 to 2.51 mg/kg, 56.22 to 345.9 mg/kg, 0.07 to 5.77 mg/kg and 7.76 to 39.5 mg/kg in sediments. The geo-accumulation index and the pollution load index were calculated to evaluate the environmental effects of heavy metal pollutants, Cu, Zn and Cd, in the study area. Soils and sediments from Ardley Island were found to be moderately polluted with the studied metals. Pearson’s correlation analysis and principal component analysis were applied to assess the distribution pattern and potential source of heavy metals. The results suggest that Cu, Zn and Cd in the study area originated from both the lithogenic sources and penguin guano, while Pb and Cr were probably derived from lithogenic sources.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Vaanmathy Pandiyaraj ◽  
Ankita Murmu ◽  
Saravana Kumari Pandy ◽  
Murugan Sevanan ◽  
Shanamitha Arjunan

Abstract The perpetual exposure of several manmade materials and their activities such as urbanization, industrialization, transportation, mining, construction, petroleum refining, manufacturing, preservatives, disinfectants etc., release various pollutants like organic, inorganic, and heavy metals which pollute the air, water, and soil. This poses various environmental issues which are relevant to the ecosystem and human wellbeing that intensify the implementation of new expedient treatment technologies. Likewise, phenolic and heavy metal pollutants find their way into the environment. These phenolic and heavy metals are toxic to the liver, heart and carcinogenic. Therefore, the removal of these kinds of pollutants from the environment is a highly challenging issue. As conventional treatment technologies have consequent drawbacks, new interests have been developed to remediate and remove pollutants from the ecosystem using metal nanoparticles (MPNs). To date, many researchers all over the world have been investigating novel approaches to enhance various remediation application technologies. One such approach that the researchers are constantly showing interest in is the use of nanomaterials with potential applications towards the environment. In this regard, MPNs like Copper (Cu), Nickel (Ni), Palladium (Pd), Gold (Au), Silver (Ag), Platinum (Pt), Titanium (Ti), and other nano metals are serving as a suitable agent to eliminate emerging contaminants in various fields, particularly in the removal of phenolic and heavy metal pollutants. This chapter discusses the mechanism and application of various MPNs in eliminating various phenolic and heavy metal pollutants from the environment.


2021 ◽  
Author(s):  
Yu Chen ◽  
Fan Zhang ◽  
Yu Liu ◽  
Chen Zhang ◽  
Gang Tian ◽  
...  

Heavy metal pollutants such as Hg, Pb, Cr, and Cd contained in flue gas from the sintering equipment bring about environmental hazards. In this paper, 4 small sintering machines with different control technologies were selected, and the US EPA 29 method was used to analyze the emission concentration of heavy metals from the sintering machines, and the removal efficiency of the different flue gas control technologies on the of heavy metal pollutants was analyzed. The results show that the dry flue gas desulfurization combining baghouse dedusting method has high removal efficiency of heavy metals in flue gas, with mercury removal efficiency of 60.06%, Pb removal efficiency of 92.92%, Cd removal efficiency of 92.20%, Cr removal efficiency of 55.14%. The removal efficiency of heavy metals is obviously higher than that of conventional electrostatic precipitation combining wet desulfurization. This is mainly ascribed to those heavy metals are mainly concentrated in the fine particulate matters of the fly ash. Dust removal technology can effectively coordinate the control of Hg, Cr, Pb and Cd in the flue gas. The semi-dry desulphurization and baghouse dedusting technology can promote the enrichment of Hg and Cr in fly ash. The results of this study can provide theoretical guidance for the control of Hg, Cr, Pb, Cd and other heavy metal pollutants control in sintering equipment, and for flue gas ultra-low emission transformation.


2021 ◽  
Author(s):  
Yunfei Li

With the rapid development of industry, large amounts of untreated industrial waste water and domestic sewage carried heavy metal pollutants below into the water body with enrichment in sediments. When environmental conditions change, enrichment of heavy metals in sludge may be released into the overlying water causing the overlying water quality standard. The agent on immobilization of heavy metals in sludge is to be an extremely promising remediation technology in order to reduce impact on the environment. This test selects Hydroxyapatite and Nano Hydroxyapatite as curing agent and puts it into heavy metal pollution by different proportion. The paper conducts the research of curing agent and optimizes the better one. The paper selected HAP as matrix and CaO and MgO as different additives and studied complex condition of heavy metals in sediment of curing effect. Also the paper conduct the static releases test for pollutants in cured sediment in order to provide technical support for contaminated sediment remediation of heavy metal.


2021 ◽  
Author(s):  
◽  
Andrea Tuohy

<p>Global industrialization has led to emissions of heavy metal pollutants that are transported to the most remote areas of the planet. Elevated concentrations of heavy metals are ecological toxins in soils, water, and air. Monitoring has only been implemented during the last few decades with anthropogenic emissions superimposed over natural sources. Furthermore, most monitoring programs generally target local sources of emissions near cities rather than large-scale impacts. Thus quantifying safe limits and controlling industrial emissions is complicated by a lack of knowledge about natural sources and variability on regional, hemispheric, and global scales. New baseline studies are needed to determine i) natural background concentrations of heavy metals, ii) contributions of anthropogenic emissions, and iii) the degree to which atmospheric transport affects background heavy metal concentrations. Due to the remoteness of Antarctica, ice cores can be used as sensitive recorders of background heavy metal atmospheric concentrations over thousands of years. This provides the opportunity to determine natural variability and contributions to the atmosphere on a hemispheric scale, as well as dating the onset of anthropogenic emissions.  This thesis presents a 2,300-year time-series record of six heavy metals from a new high-resolution coastal ice core from the Ross Sea region of Antarctica. Roosevelt Island is an ice dome located in the north-eastern Ross Ice Shelf, and a 763m deep ice core was collected over two field seasons as part of the Roosevelt Island Climate Evolution (RICE) project. In addition to 31 other trace elements, concentrations of iron, aluminium, manganese, lead, arsenic, and thallium were measured using inductively coupled plasma mass spectrometry (ICPMS) in the RICE ice core, snow pit, and snow precipitation samples. Sample resolution over the 20th century is extremely high (~1.6 months per sample), with ~four-year resolution extending the record back to 2,300 years ago.  We use this record to first determine the representativeness of the RICE ice core to Southern Hemisphere atmospheric concentrations of heavy metals, and find that concentrations in snow precipitation are strongly linked to meridional air mass pathways from the South Pacific. Local deposition characteristics and heavy metal seasonality are also examined in the surface snow. The natural sources and variability of the six heavy metals are explored through the last ~2,000 years, and this provides the context for examining changes over the 20th century. We find that iron, aluminium, and manganese are strongly associated with crustal dust and do not exhibit source changes over the 20th century, though significant increases in concentration may be due to anthropogenically induced increases in atmospheric dust. Even when increased variability due to recent increased efficiency of atmospheric transport is taken into account, the change in source emission strength dominates the concentration increases in these elements recorded in the RICE ice core. Thallium concentrations do not increase over the 20th century, and are likely linked to local volcanism. Both lead and arsenic concentrations increase significantly over the 20th century, with the pattern in lead concentrations closely matching existing Antarctic records. These increases are linked to anthropogenic emissions, with peaks during the 1970s and 1980s up to 400% higher than pre-industrial concentrations – well outside the natural variability. However, the ice core record shows a decreasing trend in concentrations of these elements from the mid-1990s to the present. Arsenic concentrations return to within pre-industrial variability, and the timing of this trend coincides with increasing efforts of policy makers in Southern Hemisphere countries to regulate industrial emissions and to promote public awareness of heavy metal pollutants.</p>


2021 ◽  
Author(s):  
◽  
Andrea Tuohy

<p>Global industrialization has led to emissions of heavy metal pollutants that are transported to the most remote areas of the planet. Elevated concentrations of heavy metals are ecological toxins in soils, water, and air. Monitoring has only been implemented during the last few decades with anthropogenic emissions superimposed over natural sources. Furthermore, most monitoring programs generally target local sources of emissions near cities rather than large-scale impacts. Thus quantifying safe limits and controlling industrial emissions is complicated by a lack of knowledge about natural sources and variability on regional, hemispheric, and global scales. New baseline studies are needed to determine i) natural background concentrations of heavy metals, ii) contributions of anthropogenic emissions, and iii) the degree to which atmospheric transport affects background heavy metal concentrations. Due to the remoteness of Antarctica, ice cores can be used as sensitive recorders of background heavy metal atmospheric concentrations over thousands of years. This provides the opportunity to determine natural variability and contributions to the atmosphere on a hemispheric scale, as well as dating the onset of anthropogenic emissions.  This thesis presents a 2,300-year time-series record of six heavy metals from a new high-resolution coastal ice core from the Ross Sea region of Antarctica. Roosevelt Island is an ice dome located in the north-eastern Ross Ice Shelf, and a 763m deep ice core was collected over two field seasons as part of the Roosevelt Island Climate Evolution (RICE) project. In addition to 31 other trace elements, concentrations of iron, aluminium, manganese, lead, arsenic, and thallium were measured using inductively coupled plasma mass spectrometry (ICPMS) in the RICE ice core, snow pit, and snow precipitation samples. Sample resolution over the 20th century is extremely high (~1.6 months per sample), with ~four-year resolution extending the record back to 2,300 years ago.  We use this record to first determine the representativeness of the RICE ice core to Southern Hemisphere atmospheric concentrations of heavy metals, and find that concentrations in snow precipitation are strongly linked to meridional air mass pathways from the South Pacific. Local deposition characteristics and heavy metal seasonality are also examined in the surface snow. The natural sources and variability of the six heavy metals are explored through the last ~2,000 years, and this provides the context for examining changes over the 20th century. We find that iron, aluminium, and manganese are strongly associated with crustal dust and do not exhibit source changes over the 20th century, though significant increases in concentration may be due to anthropogenically induced increases in atmospheric dust. Even when increased variability due to recent increased efficiency of atmospheric transport is taken into account, the change in source emission strength dominates the concentration increases in these elements recorded in the RICE ice core. Thallium concentrations do not increase over the 20th century, and are likely linked to local volcanism. Both lead and arsenic concentrations increase significantly over the 20th century, with the pattern in lead concentrations closely matching existing Antarctic records. These increases are linked to anthropogenic emissions, with peaks during the 1970s and 1980s up to 400% higher than pre-industrial concentrations – well outside the natural variability. However, the ice core record shows a decreasing trend in concentrations of these elements from the mid-1990s to the present. Arsenic concentrations return to within pre-industrial variability, and the timing of this trend coincides with increasing efforts of policy makers in Southern Hemisphere countries to regulate industrial emissions and to promote public awareness of heavy metal pollutants.</p>


Sign in / Sign up

Export Citation Format

Share Document