scholarly journals Acute toxicity evaluation of mixture of neem (Azadirachta indica) and moringa (Moringa oleifera) seed oils in rats

2017 ◽  
Vol 11 (11) ◽  
pp. 369-375
Author(s):  
J. O. Y. Ilesanmi ◽  
D. T. Gungula ◽  
M. S. Nadro
2010 ◽  
Vol 2010 ◽  
pp. 1-8 ◽  
Author(s):  
Joana O. Ilesanmi ◽  
Daniel T. Gungula

This study was conducted to determine the effects of neem (Azadirachta indicaA. Juss) and moringa (Moringa oleifera) seed oils on the storability of cowpea grain. Cowpea samples were treated with various concentrations (0.5, 1.0, and 1.5 mL/200 g cowpea) of pure neem and moringa oils and their mixtures in ratios of 1:1, 1:2, and 1:3. The treated cowpea samples were stored for 180 days. Data were collected every 30 days on number of eggs laid, total weevil population, and percentage of uninfested grains and analysed statistically. Significantly different means were compared using LSD at . Increasing oil concentration resulted in better cowpea protection, for example, in oviposition where the control had 6513 eggs, only 8 eggs were recorded in pure neem oil-treated sample at 0.5 mL/200 g. Generally, better results were obtained with higher oil concentrations either in their pure forms or mixtures. The control had a total weevil population of 4988, while most treated samples had none. The control samples had 0% uninfested grains, while 73–94% of uninfested grains were observed in treated samples after 6 months of storage. Therefore, mixture of the oils at 1.5 mL/200 g can be effectively used to store cowpea.


2020 ◽  
Vol 27 ◽  
Author(s):  
Leydianne Leite de Siqueira Patriota ◽  
Dayane Kelly Dias do Nascimento Santos ◽  
Bárbara Rafaela da Silva Barros ◽  
Lethícia Maria de Souza Aguiar ◽  
Yasmym Araújo Silva ◽  
...  

Background: Protease inhibitors have been isolated from plants and present several biological activities, including immunomod-ulatory action. Objective: This work aimed to evaluate a Moringa oleifera flower trypsin inhibitor (MoFTI) for acute toxicity in mice, hemolytic activity on mice erythrocytes and immunomodulatory effects on mice splenocytes. Methods: The acute toxicity was evaluated using Swiss female mice that received a single dose of the vehicle control or MoFTI (300 mg/kg, i.p.). Behavioral alterations were observed 15–240 min after administration, and survival, weight gain, and water and food consumption were analyzed daily. Organ weights and hematological parameters were analyzed after 14 days. Hemolytic activity of MoFTI was tested using Swiss female mice erythrocytes. Splenocytes obtained from BALB/c mice were cultured in the absence or presence of MoFTI for the evaluation of cell viability and proliferation. Mitochondrial membrane potential (ΔΨm) and reactive oxygen species (ROS) levels were also determined. Furthermore, the culture supernatants were analyzed for the presence of cytokines and nitric oxide (NO). Results: MoFTI did not cause death or any adverse effects on the mice except for abdominal contortions at 15–30 min after administration. MoFTI did not exhibit a significant hemolytic effect. In addition, MoFTI did not induce apoptosis or necrosis in splenocytes and had no effect on cell proliferation. Increases in cytosolic and mitochondrial ROS release, as well as ΔΨm reduction, were observed in MoFTI-treated cells. MoFTI was observed to induce TNF-α, IFN-γ, IL-6, IL-10, and NO release. Conclusion: These results contribute to the ongoing evaluation of the antitumor potential of MoFTI and its effects on other immunological targets.


2016 ◽  
Vol 23 (7) ◽  
pp. 645-649 ◽  
Author(s):  
José H.E.S. Freitas ◽  
Keissy V. de Santana ◽  
Pollyanna M. da Silva ◽  
Maiara C. de Moura ◽  
Luana C.B.B. Coelho ◽  
...  

2017 ◽  
Vol 329 ◽  
pp. 102-109 ◽  
Author(s):  
William K. Garde ◽  
Steven G. Buchberger ◽  
David Wendell ◽  
Margaret J. Kupferle

2016 ◽  
Vol 4 (1) ◽  
pp. 4 ◽  
Author(s):  
Idris Bello ◽  
Abdulmenem Bakkouri ◽  
Yasser Tabana ◽  
Bassel Al-Hindi ◽  
Majed Al-Mansoub ◽  
...  

2020 ◽  
Vol 15 (3) ◽  
pp. 15-23
Author(s):  
J.B. Hussein ◽  
J.O.Y. Ilesanmi ◽  
H.M Aliyu ◽  
V. Akogwu

The possible combination of cowpea with moringa seed flour for the production of nutrient dense moimoi (steamed cowpea paste) and akara (deep-fat fried balls) were investigated. Composite blends of cowpea and moringa seed flour in different proportions (98:2, 96:4 and 94:6) were used in moimoi and akara production while 100% cowpea flour served as control. The proximate and sensory analyses of the products were determined using standard methods. The results showed a positive influence in the proximate compositions of these products as the proportion of moringa seed flour substitution increased. The moimoi samples ranged between 10.77 – 26.92%, 18.27 – 21.16%, 8.12 – 10.72%, 1.80 – 2.19%, 0.76 – 0.84%, 44.07 – 53.99% and 269.87 – 335.18 Kcal/100g while akara samples ranged between 9.73 – 10.77%, 19.51 – 22.12%, 7.41 – 9.90%, 2.39 – 2.71%, 0.87 – 0.93%, 54.69 – 59.00% and 320.26 – 332.08 Kcal/100g respectively for moisture contents, protein contents, crude fats, ash, crude fibers, carbohydrates and energy values. The sensory evaluation results of these products favourably competed with the control except samples D (94:6) which showed a slight difference in all parameters tested. Thus, the substitution of cowpea with moringa seed flour up to 2% and 4% proportions are adequate to produce acceptable moimoi and akara, respectively.The possible combination of cowpea with moringa seed flour for the production of nutrient dense moimoi (steamed cowpea paste) and akara (deep-fat fried balls) were investigated. Composite blends of cowpea and moringa seed flour in different proportions (98:2, 96:4 and 94:6) were used in moimoi and akara production while 100% cowpea flour served as control. The proximate and sensory analyses of the products were determined using standard methods. The results showed a positive influence in the proximate compositions of these products as the proportion of moringa seed flour substitution increased. The moimoi samples ranged between 10.77 – 26.92%, 18.27 – 21.16%, 8.12 – 10.72%, 1.80 – 2.19%, 0.76 – 0.84%, 44.07 – 53.99% and 269.87 – 335.18 Kcal/100g while akara samples ranged between 9.73 – 10.77%, 19.51 – 22.12%, 7.41 – 9.90%, 2.39 – 2.71%, 0.87 – 0.93%, 54.69 – 59.00% and 320.26 – 332.08 Kcal/100g respectively for moisture contents, protein contents, crude fats, ash, crude fibers, carbohydrates and energy values. The sensory evaluation results of these products favourably competed with the control except samples D (94:6) which showed a slight difference in all parameters tested. Thus, the substitution of cowpea with moringa seed flour up to 2% and 4% proportions are adequate to produce acceptable moimoi and akara, respectively. Keywords: Moimoi, Akara, Cowpea flour, Moringa oleifera seed flour and Sensory properties: Moimoi, Akara, Cowpea flour, Moringa oleifera seed flour and Sensory properties


Sign in / Sign up

Export Citation Format

Share Document