To evaluate likely antiamyloidogenic property of ferulic acid and baicalein against human islet amyloid polypeptide aggregation, in vitro Study

Author(s):  
Seyyed Mehdi Mirhashemi
2010 ◽  
Vol 10 ◽  
pp. 879-893 ◽  
Author(s):  
Nathaniel G. N. Milton ◽  
J. Robin Harris

The diabetes-associated human islet amyloid polypeptide (IAPP) is a 37-amino-acid peptide that forms fibrilsin vitroandin vivo. Human IAPP fibrils are toxic in a similar manner to Alzheimer's amyloid-β (Aβ) and prion protein (PrP) fibrils. Previous studies have shown that catalase binds to Aβ fibrils and appears to recognize a region containing the Gly-Ala-Ile-Ile sequence that is similar to the Gly-Ala-Ile-Leu sequence found in human IAPP residues 24-27. This study presents a transmission electron microscopy (TEM)—based analysis of fibril formation and the binding of human erythrocyte catalase to IAPP fibrils. The results show that human IAPP 1-37, 8-37, and 20-29 peptides form fibrils with diverse and polymorphic structures. All three forms of IAPP bound catalase, and complexes of IAPP 1-37 or 8-37 with catalase were identified by immunoassay. The binding of biotinylated IAPP to catalase was high affinity with a KDof 0.77nM, and could be inhibited by either human or rat IAPP 1-37 and 8-37 forms. Fibrils formed by the PrP 118-135 peptide with a Gly-Ala-Val-Val sequence also bound catalase. These results suggest that catalase recognizes a Gly-Ala-Ile-Leu—like sequence in amyloid fibril-forming peptides. For IAPP 1-37 and 8-37, the catalase binding was primarily directed towards fibrillar rather than ribbon-like structures, suggesting differences in the accessibility of the human IAPP 24-27 Gly-Ala-Ile-Leu region. This suggests that catalase may be able to discriminate between different structural forms of IAPP fibrils. The ability of catalase to bind IAPP, Aβ, and PrP fibrils demonstrates the presence of similar accessible structural motifs that may be targets for antiamyloid therapeutic development.


2017 ◽  
Vol 114 (42) ◽  
pp. 11127-11132 ◽  
Author(s):  
Diana Ribeiro ◽  
Istvan Horvath ◽  
Nikki Heath ◽  
Ryan Hicks ◽  
Anna Forslöw ◽  
...  

Extracellular vesicles (EVs) are small vesicles released by cells to aid cell–cell communication and tissue homeostasis. Human islet amyloid polypeptide (IAPP) is the major component of amyloid deposits found in pancreatic islets of patients with type 2 diabetes (T2D). IAPP is secreted in conjunction with insulin from pancreatic β cells to regulate glucose metabolism. Here, using a combination of analytical and biophysical methods in vitro, we tested whether EVs isolated from pancreatic islets of healthy patients and patients with T2D modulate IAPP amyloid formation. We discovered that pancreatic EVs from healthy patients reduce IAPP amyloid formation by peptide scavenging, but T2D pancreatic and human serum EVs have no effect. In accordance with these differential effects, the insulin:C-peptide ratio and lipid composition differ between EVs from healthy pancreas and EVs from T2D pancreas and serum. It appears that healthy pancreatic EVs limit IAPP amyloid formation via direct binding as a tissue-specific control mechanism.


1995 ◽  
Vol 1 (5) ◽  
pp. 542-553 ◽  
Author(s):  
Gunilla Westermark ◽  
Michelle Benig Arora ◽  
Niles Fox ◽  
Raymond Carroll ◽  
Shu Jin Chan ◽  
...  

2019 ◽  
Vol 51 (9) ◽  
pp. 1-16 ◽  
Author(s):  
Xinghuo Wu ◽  
Zhiwei Liao ◽  
Kun Wang ◽  
Wenbin Hua ◽  
Xianzhe Liu ◽  
...  

Abstract Intervertebral disc degeneration (IDD) is characterized by excessive apoptosis of nucleus pulposus (NP) cells and hyperactive extracellular matrix (ECM) catabolism. Our previous studies revealed the relationship between human islet amyloid polypeptide (hIAPP) and NP cell apoptosis. However, the role of hIAPP aggregates in IDD has not yet been investigated. This study aimed to determine whether the accumulation of hIAPP aggregates promotes IDD progression. The aggregation of hIAPP increased in human NP tissues during IDD. The deposition of hIAPP aggravated the compression-induced IDD that promoted NP cell apoptosis and ECM degradation via IL-1β/IL-1Ra signaling in an ex vivo rat disc model. Moreover, neutralizing IL-1β augmented the protective effects of hIAPP overexpression by decreasing hIAPP aggregation in human NP cells. These results suggest that the aggregation of hIAPP promotes NP cell apoptosis and ECM degradation ex vivo and in vitro by disrupting the balance of IL-1β/IL-1Ra signaling.


Diabetes ◽  
1994 ◽  
Vol 43 (5) ◽  
pp. 640-644 ◽  
Author(s):  
E. J. de Koning ◽  
J. W. Hoppener ◽  
J. S. Verbeek ◽  
C. Oosterwijk ◽  
K. L. van Hulst ◽  
...  

Biochimie ◽  
2020 ◽  
Vol 170 ◽  
pp. 26-35 ◽  
Author(s):  
Shadai Salazar Vazquez ◽  
Bertrand Blondeau ◽  
Pierre Cattan ◽  
Mathieu Armanet ◽  
Ghislaine Guillemain ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (21) ◽  
pp. 12815-12825
Author(s):  
Yajie Wang ◽  
Feihong Meng ◽  
Tong Lu ◽  
Chunyun Wang ◽  
Fei Li

Their is a counteraction between a decrease in the disruptive ability of metal-associated oligomer species and an increase in the quantity of oligomers promoted by the metal binding in the activity of hIAPP induced membrane damage.


Sign in / Sign up

Export Citation Format

Share Document