scholarly journals A statistical approach to investigate oil displacement efficiency in thermal recovery techniques for heavy oil based on one-dimensional core experiment

2019 ◽  
Vol 10 (4) ◽  
pp. 71-84
Author(s):  
Liu Dong ◽  
Su Yan-Chun ◽  
Ge Li-Zhen ◽  
Hu Ting-Hui ◽  
Zhu Qin
2012 ◽  
Vol 524-527 ◽  
pp. 1185-1189
Author(s):  
Hai Huang ◽  
Wei Shi Zheng ◽  
Bo Chen ◽  
Yi Fei Liu

This paper presents experimental work on the research of the mechanism of oil displacement of steam drive and high-temperature-compound steam drive, which in order to improve the conventional steam drive technology and increase the recovery of heavy oil. Many experiments were done with the sand-packed model under the formation condition. The results show that: (a) the high-temperature-compound steam drive could extend the water breakthrough time, increase the permeability of oil phase, reduce the residual oil saturation; (b) reducing the viscosity by CO2 dissolution, maintaining the pressure, improving the oil flow ratio, dissolved gas drive,Improving oil displacement efficiency,all of above were the increase production mechanism of high- temperature-compound steam drive.


2012 ◽  
Vol 550-553 ◽  
pp. 468-471
Author(s):  
Fu Sheng Zhang ◽  
Jian Ouyang ◽  
De Wei Wang ◽  
Xin Fang Feng ◽  
Li Qing Xu

The core displacement experiments show that displacement system containing chemical agent can enhance oil recovery by over 20% comparing to water flooding. Mechanisms by which chemical agent enhance oil recovery of heavy oil reservoir water flooding are: (1) improving mobility ratio by significantly decreasing viscosity of heavy oil, volumetric sweep efficiency is improved; (2) increasing capillary number by significantly decreasing oil-water interfacial tension, oil displacement efficiency is increased; (3) changing wettability of the rock surface from oil-wet to water-wet by significantly reducing the contact angle between displacement liquid and sandstone surface, capillary force is changed from the resistance force to the motive force, the residual oil is expelled from the small pores and the wall of pores, oil displacement efficiency is significantly increased.


2012 ◽  
Vol 524-527 ◽  
pp. 1450-1455
Author(s):  
An Zhu Xu ◽  
Xiang Hong Wu ◽  
Zi Fei Fan ◽  
Lun Zhao ◽  
Cheng Gang Wang

With superheated steam, there is no direct relationship between temperature and pressure, Therefore, at a particular pressure it is possible for superheated steam to exist at a wide range of temperatures higher than that of its saturated steam. The heat transfer coefficient is 1/150-1/250 as much as that of saturated steam during heat transferring, and it takes a relatively long time to cool, during which time the steam is releasing very little energy and transmitted long distances. The mechanisms of superheated steam stimulation are mainly pointed to the performance of crude oil viscosity reduced, flow environment improved, rock wettability changed, oil displacement efficiency improved. Physical simulation shows that oil displacement efficiency by superheated steam is 6-12% higher than that of saturated steam at the same temperature, and under the condition of carrying the same heat, superheated steam enlarged the heating radius by about 10m, oil steam ratio increased by 0.7. Superheated steam stimulation was put into Kazakstan’s heavy oil reservoir after two cycles of saturated steam stimulation. The average daily oil production was 2-4 times that of saturated steam stimulation, which improved heavy oil production effectively. The secondary heavy oil thermal recovery by superheated steam stimulation applied in marginal heavy oil reservoirs achieved satisfactory effect.


Author(s):  
Jie Tan ◽  
Ying-xian Liu ◽  
Yan-lai Li ◽  
Chun-yan Liu ◽  
Song-ru Mou

AbstractX oilfield is a typical sandstone reservoir with big bottom water in the Bohai Sea. The viscosity of crude oil ranges from 30 to 425 cp. Single sand development with the horizontal well is adopted. At present, the water content is as high as 96%. The water cut of the production well is stable for a long time in the high water cut period. The recoverable reserves calculated by conventional methods have gradually increased, and even the partial recovery has exceeded the predicted recovery rate. This study carried out an oil displacement efficiency experiment under big water drive multiple to accurately understand an extensive bottom water reservoir's production law in an ultra-high water cut stage. It comprehensively used the scanning electron microscope date, casting thin section, oil displacement experiment, and production performance to analyze the change law of physical properties and relative permeability curve from the aspects of reservoir clay minerals, median particle size, pore distribution, and pore throat characteristics. Therefore, the development law of horizontal production wells in sandstone reservoirs with big bottom water is understood. It evaluates the ultimate recovery of sandstone reservoirs with big bottom water. It provides a fundamental theoretical basis and guidance for dynamic prediction and delicate potential tapping of sandstone reservoirs with big bottom water at a high water cut stage.


2014 ◽  
Vol 675-677 ◽  
pp. 1495-1499 ◽  
Author(s):  
Tao Ping Chen ◽  
Biao Qiu

The displacement performance of heat-resistant polymer is evaluated with the artificial cores and natural cores under 95°C. The best concentration of BH heat-resistant polymer is 1500 mg/L, and the best slug is 0.6 PV on the condition of the average permeability is 600×10-3μm2 of the homogeneous core and the oil viscosity is 2.3mPa • s. Under the best concentration and the PV size, BH heat-resistant polymer solution has better displacement effect for the artificial double core whose permeability ratio is less than 4. When permeability ratio exceed 4, the displacement affect no longer increase. When the mobility ratio increase from 0.05 to 0.2, for the artificial cores, the recovery of polymer flooding reduce by 3.17%, and for the natural cores, the recovery of polymer flooding reduce by 2.26%. The recovery of BH polymer that is aged for 90 days after vacuumed is 32.29%. Comparing with the fresh BH polymer, it is lower by 6.56%. That is to say that the aged BH polymer still has good oil displacement efficiency.


Sign in / Sign up

Export Citation Format

Share Document